Advertisement

Minimum and non-Minimum Time Solutions to the Firing Squad Synchronization Problem

  • Margherita Napoli
  • Mimmo ParenteEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

In this paper we present a survey on the minimum and non minimum time solutions to the Firing Squad Synchronization Problem. Particular emphasis is on the contribution given by Jozef Gruska, in honor of which this article is dedicated.

The problem consists in synchronizing a Cellular Automata (CA) whose cells work at discrete steps at unison. The first cell is initially in a particular state, called the General, and all the others are in a Latent state. The problem is solved when, all the cells enter for the first time and simultaneously a Firing state. In its original and basic formulation, the cells are arranged as a line, here we consider also other shapes like rings, rectangular grids and toruses. Also other variations of the problem are considered, such as the limited link capacitiesand different numbers and positions of the General state.

We consider both the minimum time needed to synchronize the CA and some algorithms synchronizing in particular times. Some open problems are also proposed.

Keywords

FSSP Cellular Automata Synchronous Computations Channel Capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bal67]
    Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10(1), 22–42 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [Bey69]
    Beyer, W.T.: Recognition of topological invariants by iterative arrays. PhD thesis, Massahcusetts Institute of Technology (1969).Google Scholar
  3. [CDDS89]
    Coan, B.A., Dolev, D., Dwork, C., Stockmeyer, L.J.: The distributed firing squad problem. SIAM J. Comput. 18(5), 990–1012 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. [Cul89]
    Karel Culik, I.I.: Variations of the firing squad problem and applications. Inf. Process. Lett. 30(3), 153–157 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [DHM12]
    Dolev, D., Hoch, E.N., Moses, Y.: An optimal self-stabilizing firing squad. SIAM J. Comput. 41(2), 415–435 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [GK05]
    Goldstein, D., Kobayashi, K.: On the complexity of network synchronization. SIAM J. Comput. 35(3), 567–589 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [GK12]
    Goldstein, D., Kobayashi, K.: On minimal-time solutions of firing squad synchronization problems for networks. SIAM J. Comput. 41(3), 618–669 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [GLNP06]
    Gruska, J., La Torre, S., Napoli, M., Parente, M.: Different time solutions for the firing squad synchronization problem on basic grid networks. RAIRO - Theoretical Informatics and Applications, ITA 40(2), 177–206 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [GLP04]
    Gruska, J., La Torre, S., Parente, M.: Optimal time and communication solutions of firing squad synchronization problems on square arrays, toruses and rings. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 200–211. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. [GLP07]
    Gruska, J., La Torre, S., Parente, M.: The firing squad synchronization problem on squares, toruses and rings. Int. J. Found. Comput. Sci. 18(3), 637–654 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [Got62]
    Goto, E.: A minimum time solution of the firing squad problem. In: Course Notes for Applied Mathematics 298, Harvard University, pp. 52–59 (1962).Google Scholar
  12. [Kob77]
    Kobayashi, K.: The firing squad synchronization problem for two-dimensional arrays. Information and Control 34(3), 177–197 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  13. [Kob01]
    Kobayashi, K.: On time optimal solutions of the firing squad synchronization problem for two-dimensional paths. Theor. Comput. Sci. 259(1–2), 129–143 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [LNP96]
    La Torre, S., Napoli, M., Parente, M.: Synchronization of one-way connected processors. Complex Systems 10(4), 239–256 (1996)MathSciNetzbMATHGoogle Scholar
  15. [LNP98]
    La Torre, S., Napoli, M., Parente, D.: Synchronization of a line of identical processors at a given time. Fundam. Inform. 34(1–2), 103–128 (1998)MathSciNetzbMATHGoogle Scholar
  16. [LNP00]
    La Torre, S., Napoli, M., Parente, M.: A compositional approach to synchronize two dimensional networks of processors. Theoretical Informatics and applications, ITA 34(6), 549–564 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. [Maz87]
    Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theor. Comput. Sci. 50, 183–238 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  18. [Maz96]
    Mazoyer, J.: On optimal solutions to the firing squad synchronization problem. Theor. Comput. Sci. 168(2), 367–404 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [ML68]
    Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Information and Control 12(3), 212–220 (1968)zbMATHCrossRefGoogle Scholar
  20. [Moo64]
    Moore, E.F. (ed.): Sequential Machines: Selected Papers. Addison-Wesley Longman Ltd., Essex, UK, UK (1964)zbMATHGoogle Scholar
  21. [Ros13]
    Rosenberg, A.L.: Finite-state robots in a warehouse: Achieving linear parallel speedup while rearranging objects. In: Parallel Processing (ICPP), 2013 42nd International Conference on, pp. 379–388. IEEE (2013).Google Scholar
  22. [Ros14]
    Rosenberg, A.L.: Region management by finite-state robots. The Computer Journal 57(1), 59–72 (2014)CrossRefGoogle Scholar
  23. [San94]
    Sanders, P.: Massively parallel search for transition-tables of polyautomata. In: Parcella, pp. 99–108 (1994).Google Scholar
  24. [Shi74]
    Shinahr, I.: Two- and three-dimensional firing-squad synchronization problems. Information and Control 24(2), 163–180 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [SW04]
    Schmid, H., Worsch, T.: The firing squad synchronization problem with many generals for one-dimensional ca. In: Exploring New Frontiers of Theor. Inf., IFIP (TCS2004), pp. 111–124. Kluwer (2004).Google Scholar
  26. [UHS05]
    Umeo, H., Hisaoka, M., Sogabe, T.: A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. International Journal of Unconventional Computing 1(4), 403–426 (2005)zbMATHGoogle Scholar
  27. [UHS05]
    Umeo, H., Kubo, K.: A seven-state time-optimum square synchronizer. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 219–230. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. [UK12]
    Umeo, H., Kubo, K.: Recent developments in constructing square synchronizers. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 171–183. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. [UKT13]
    Umeo, H., Kubo, K., Takahashi, Y.: An isotropic optimum-time fssp algorithm for two-dimensional cellular automata. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 381–393. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. [Ume96]
    Umeo, H.: A note on firing squad synchronization algorithms. In: Worsch, T., Kutrib, M., (ed.), IFIP Cellular Automata Workshop 96, pp. 65 (1996).Google Scholar
  31. [UMK03]
    Umeo, H., Michisaka, K., Kamikawa, N.: A synchronization problem on 1-bit communication cellular automata. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part I. LNCS, vol. 2657, pp. 492–500. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. [UNK12]
    Umeo, H., Nishide, K., Kubo, K.: A simple optimum-time fssp algorithm for multi-dimensional cellular automata. In: 18th international workshop on Cellular Automata and Discrete Complex Systems and 3rd international symposium Journées Automates Cellulaires, AUTOMATA & JAC, volume 90 of EPTCS, pp. 151–165 (2012)Google Scholar
  33. [UUN11]
    Umeo, H., Uchino, H., Nomura, A.: How to synchronize square arrays in optimum-time - a new square synchronization algorithm. In: International Conference on High Performance Computing & Simulation, HPCS, pp. 801–807. IEEE (2011).Google Scholar
  34. [Wak66]
    Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9(1), 66–78 (1966)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di SalernoSalernoItaly

Personalised recommendations