Advertisement

A Weakly Universal Cellular Automaton in the Pentagrid with Five States

  • Maurice MargensternEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

In this paper, we construct a cellular automaton on the pentagrid which is planar, weakly universal and which have five states only. This result much improves the best result which was with nine states.

Keywords

Cellular automata Universality Tilings Hyperbolic geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herrmann, F., Margenstern, M.: A universal cellular automaton in the hyperbolic plane. Theoretical Computer Science 296, 327–364 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Margenstern, M.: Cellular Automata and Combinatoric Tilings in Hyperbolic Spaces, a survey. In: Calude, C., Dinneen, M.J., Vajnovszki, V. (eds.): DMTCS 2003. LNCS, vol. 2731, pp. 48–72. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Margenstern, M.: Cellular Automata in Hyperbolic Spaces. In: Adamatzky, A. (ed.) Theory, Collection: Advances in Unconventional Computing and Cellular Automata, vol. 1, p. 422. Old City Publishing, Philadelphia (2007)Google Scholar
  4. 4.
    Margenstern, M.: Cellular Automata in Hyperbolic Spaces. In: Adamatzky, A. (ed.) Implementation and computations. Collection: Advances in Unconventional Computing and Cellular Automata, vol. 2, p. 360. Old City Publishing, Philadelphia (2008)Google Scholar
  5. 5.
    Margenstern, M.: Small Universal Cellular Automata in Hyperbolic Spaces: A Collection of Jewels, Collection: Emergence, Complexity and Computation. In: Zelinka, I., Adamtzky, A., Chen, G. (eds.) p. 331. Springer (2013), doi: 10.1007/978-3-642-36663-5
  6. 6.
    Margenstern, M.: A weakly universal cellular automaton in the pentagrid with five states, p. 23. arXiv:1403.2373
  7. 7.
    Margenstern, M., Song, Y.: A new universal cellular automaton on the pentagrid. Parallel Processing Letters 19(2), 227–246 (2009). doi: 10.1142/S0129626409000195 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Stewart, I.: A Subway Named Turing, Mathematical Recreations in Scientific American, 90–92 (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Université de Lorraine, LITA, EA 3097 Campus du SaulcyMetz, Cédex 1France

Personalised recommendations