Aspects of Reversibility for Classical Automata

  • Martin KutribEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)


Some aspects of logical reversibility for computing devices with a finite number of discrete internal states are addressed. These devices have a read-only input tape, may be equipped with further resources, and evolve in discrete time. The reversibility of a computation means in essence that every configuration has a unique successor configuration and a unique predecessor configuration. The notion of reversibility is discussed. In which way is the predecessor configuration computed? May we use a universal device? Do we have to use a device of the same type? Or else a device with the same computational power? Do we have to consider all possible configurations as potential predecessors? Or only configurations that are reachable from some initial configurations? We present some selected aspects as gradual reversibility and time-symmetry as well as results on the computational capacity and decidability mainly of finite automata and pushdown automata, and draw attention to the overall picture and some of the main ideas involved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Axelsen, H.B.: Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 95–105. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Axelsen, H.B., Glück, R.: A simple and efficient universal reversible turing machine. In: Dediu, A.-H., Inenaga, S., Martin-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bordihn, H., Holzer, M., Kutrib, M.: Determinization of finite automata accepting subregular languages. Theoret. Comput. Sci. 410, 3209–3222 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. J. Comput. System Sci. 78, 1115–1126 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    García, P., Vázquez de Parga, M., Cano, A., López, D.: On locally reversible languages. Theoret. Comput. Sci. 410, 4961–4974 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inform. Control 9, 620–648 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9, 350–371 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ginzburg, A.: About some properties of definite, reverse-definite and related automata. IEEE Trans. Elect. Comput. EC–15, 806–810 (1966)CrossRefzbMATHGoogle Scholar
  11. 11.
    Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)zbMATHGoogle Scholar
  12. 12.
    Havel, I.M.: The theory of regular events II. Kybernetica 6, 520–544 (1969)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Héam, P.C.: A lower bound for reversible automata. RAIRO Inform. Théor. 34, 331–341 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. AddisonWesley, Reading (1979)zbMATHGoogle Scholar
  15. 15.
    Kari, J.: Reversible cellular automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 57–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Kobayashi, S., Yokomori, T.: Learning approximately regular languages with reversible languages. Theoret. Comput. Sci. 174, 251–257 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular automata. Inform. Comput. 206, 1142–1151 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. Theoret. Comput. Sci. 411, 812–822 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. System Sci. 78, 1814–1827 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kutrib, M., Malcher, A.: One-Way reversible multi-head finite automata. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Kutrib, M., Malcher, A.: Real-time reversible one-way cellular automata. In: Cellular Automata and Discrete Complex Systems (AUTOMATA 2014) (to appear, 2014)Google Scholar
  22. 22.
    Kutrib, M., Malcher, A., Wendlandt, M.: Reversible Queue Automata. In: Non-Classical Models of Automata and Applications (NCMA 2014), vol. 304, pp. 163–178. Autralian Computer Society (2014)Google Scholar
  23. 23.
    Kutrib, M., Worsch, T.: Time-symmetric machines. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 168–181. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Kutrib, M., Worsch, T.: Degrees of Reversibility for DFA and DPDA. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 40–53. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Lamb, J.S., Roberts, J.A.: Time-reversal symmetry in dynamical systems: A survey. Phys. D 112, 1–39 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. System Sci. 60, 354–367 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    McNaughton, R., Papert, S.: Counter-Free Automata. No. 65 in Research Monographs. MIT Press (1971)Google Scholar
  29. 29.
    Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoret. Comput. Sci. 148(1), 157–163 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Morita, K.: Reversible computing and cellular automata - a survey. Theoret. Comput. Sci. 395, 101–131 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110, 241–254 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Perles, M., Rabin, M.O., Shamir, E.: The theory of definite automata. IEEE Trans. Elect. Comput. EC–12, 233–243 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pin, J.E.: On reversible automata. In: Simon, I. (ed.) Latin 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations