On the Determinization Blowup for Finite Automata Recognizing Equal-Length Languages

  • Juhani Karhumäki
  • Alexander OkhotinEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)


Motivated by the application to image compression (K. Čulík II, J. Kari, “Image compression using weighted finite automata”, Computers & Graphics, 1993), the paper considers finite automata representing formal languages with all strings of the same length, and investigates relative succinctness of representation by deterministic and nondeterministic finite automata (DFA, NFA). It is shown that an \(n\)-state NFA recognizing a language of strings of length \(\ell \) over a \(k\)-symbol alphabet can be transformed to a DFA with at most \(\ell \cdot k^{\sqrt{\frac{2}{\log _2 k}n + 3\ell + 3}} = 2^{O(\sqrt{n})}\) states. At the same time, for every \(k\)-symbol alphabet with \(k \geqslant 2\), and for every \(n \geqslant 1\), there exists an \(n\)-state NFA recognizing an equal-length language, which requires a DFA with at least \(k^{\sqrt{\frac{n}{k-1}} - 2} = 2^{\Omega (\sqrt{n})}\) states.


Formal Language Image Compression Finite Automaton Reachable State Input String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amilhastre, J., Janssen, P., Vilarem, M.-C.: FA Minimisation Heuristics for a Class of Finite Languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, p. 1. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barnsley, M.F.: Fractals Everywhere, Academic Press Professional (1988)Google Scholar
  3. 3.
    Berstel, J., Morcrette, M.: Compact representation of patterns by finite automata. In: Gagalowicz, A. (Ed.) Pixim 1989: L’Image Numérique à Paris, pp. 387–402 (1989)Google Scholar
  4. 4.
    Seuring, M., Gössel, M.: A Structural Method for Output Compaction of Sequential Automata Implemented as Circuits. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, p. 158. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Chrobak, M.: Finite automata and unary languages, Theoretical Computer Science, 47, 149–158 (1986); Errata: 302, 497–498 (2003)Google Scholar
  6. 6.
    Čulík II, K., Dube, S.: Rational and affine expressions for image description. Discrete Applied Mathematics 41(2), 85–120 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Čulík II, K., Karhumäki, J.: Finite automata computing real functions. SIAM Journal on Computing 23(4), 789–814 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Čulík II, K., Kari, J.: Image compression using weighted finite automata. Computers & Graphics 17(3), 305–313 (1993)CrossRefGoogle Scholar
  9. 9.
    Čulík II, K., Kari, J.: Image-data compression using edge-optimizing algorithm for WFA inference. Information Processing & Management 30(6), 829–838 (1994)CrossRefGoogle Scholar
  10. 10.
    Derencourt, D., Karhumäki, J., Latteux, M., Terlutte, A.: On continuous functions computed by finite automata. RAIRO Informatique Théorique et Applications 28, 387–404 (1994)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoretical Computer Science 295(1–3), 189–203 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gruska, J.: Descriptional complexity of context-free languages. In: Mathematical Foundations of Computer Science (MFCS 1973 Strbské Pleso, High Tatras, Czechoslovakia, 3–8 September), 71–83 (1973)Google Scholar
  13. 13.
    Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite languages. International Journal of Foundations of Computer Science 19(3), 581–595 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kapoutsis, C.A.: Removing Bidirectionality from Nondeterministic Finite Automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Karhumäki, J., Kari, J.: Finite automata, image manipulation and automatic real functions. In: Pin, J.-É. (Ed.) Handbook of Automata, European Mathematical Society, to appearGoogle Scholar
  16. 16.
    Karhumäki, J., Plandowski, W., Rytter, W.: The complexity of compressing subsegments of images described by finite automata. Discrete Applied Mathematics 125(2–3), 235–254 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Karhumäki, J., Sallinen, T.: Weighted Finite Automata: Computing with Different Topologies. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 14–33. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Černo, Peter, Mráz, František: \(\Delta \)-Clearing Restarting Automata and CFL. In: Mauri, Giancarlo, Leporati, Alberto (eds.) DLT 2011. LNCS, vol. 6795, pp. 153–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Leung, H.: Descriptional complexity of NFA of different ambiguity. International Journal of Foundations of Computer Science 16(5), 975–984 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lupanov, O.B.: A comparison of two types of finite automata (in Russian). Problemy Kibernetiki 9, 321–326 (1963)Google Scholar
  21. 21.
    Mandl, R.: Precise bounds associated with the subset construction on various classes of nondeterministic finite automata. In: 7th Princeton Conference on Information and System Sciences, 263–267 (1973)Google Scholar
  22. 22.
    Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Transactions on Computers 20, 1211–1214 (1971)CrossRefzbMATHGoogle Scholar
  23. 23.
    Okhotin, A.: Unambiguous finite automata over a unary alphabet. Information and Computation 212, 15–36 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary alphabets. Journal of Automata, Languages and Combinatorics 2(3), 177–186 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland

Personalised recommendations