A Robust Universal Flying Amorphous Computer

  • Lukáš Petrů
  • Jiří WiedermannEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)


Amorphous computers are systems that derive their computational capability from the operation of vast numbers of simple, identical, randomly distributed and locally communicating units. The wireless communication ability and the memory capacity of the computational units is severely restricted due to their minimal size. Moreover, the units originally have no identifiers and can only use simple asynchronous communication protocols that cannot guarantee a reliable message delivery. In this work we concentrate on a so-called robust flying amorphous computer whose units are in a constant motion. The units are modelled by miniature RAMs communicating via radio. For this model we design a distributed probabilistic communication protocol and an algorithm enabling a simulation of a RAM in finite time. Our model is robust in the sense that if one or several computational units fail the computer will autonomously restart and reconfigure itself in order to initiate the computation anew. The underlying algorithms make use of a number of original ideas having no counterpart in the classical theory of distributed computing.


Base Node Computational Unit Message Delivery Version Number Potential Leader 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Reading. Addison-Wesley, MA (1974)zbMATHGoogle Scholar
  2. 2.
    Hoyle, F.: The Black Cloud. Penguin Books, 219 p. (1957).Google Scholar
  3. 3.
    Kurzweil R.: The Singularity is Near. Viking Books, 652 pages (2005).Google Scholar
  4. 4.
    Petrů L.: Universality in Amorphous Computing. PhD Dissertation Thesis, Dept. of Math. and Physics, Charles University, Prague (2009).Google Scholar
  5. 5.
    Petrů, L., Wiedermann, J.: A Model of an Amorphous Computer and Its Communication Protocol. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 446–455. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Petrū, L., Wiedermann, J.: A Universal Flying Amorphous Computer. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 189–200. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Petů L., Wiedermann, J.: Flying Amorphous Computer: A Robust Model. Technical report No. 1173, Institute of Computer Science, Academy of Sciences of the Czech Republic (December 2012).Google Scholar
  8. 8.
    Vinge, V.: A Deepness in the Sky. Tor Books, 800 p. (January 2000).Google Scholar
  9. 9.
    Wiedermann, J., Petru, L.: Computability in Amorphous Structures. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 781–790. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Wiedermann, J., Petrů, L.: Communicating Mobile Nano-Machines and Their Computational Power. In: Cheng, M. (ed.) NanoNet 2008. LNICST, vol. 3, pp. 123–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Wiedermann, J., Petrů, L.: On the Universal Computing Power of Amorphous Computing Systems. Theory of Computing Systems 46(4), 995–1010 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wiedermann, J.: Nanomachine Computing by Quorum Sensing. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 203–215. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Wiedermann, J.: Amorphous Computing: A Research Agenda for the Near Future. Natural Computing 11(1), 59–63 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wiedermann, J.: Computability and Non-computability Issues in Amorphous Computing. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 1–9. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Wiedermann, J.: The many forms of amorphous computational systems. In: H. Zenil (Ed.): A Computable Universe. Understanding Computation and Exploring Nature As Computation, p. 243–256. World Scientific, Singapore (2013).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations