Advertisement

How Can We Construct Reversible Machines Out of Reversible Logic Element with Memory?

  • Kenichi MoritaEmail author
  • Tsuyoshi Ogiro
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

Reversible computing is a paradigm of computation closely related to physical reversibility. In this survey/tutorial paper, we discuss topics on reversible logic elements with memory (RLEM), which are used to build reversible computing machines. It is known that any reversible sequential machine (RSM) can be constructed systematically and simply from a rotary element (RE), a typical 2-state RLEM. It is also known that “all” non-degenerate 2-state RLEMs except only four are universal. Thus, RSMs can be built by any one of universal RLEMs. However, so far, no concise construction method has been given except the method of using RE. Here, we show a new simple method of composing RSMs from 2-state RLEMs of ID numbers 4-31 and 3-7.

Keywords

Output Port Input Port Reversible Logic Sequential Machine Move Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Büning, H., Priese, L.: Universal asynchronous iterative arrays of Mealy automata. Acta Informatica 13, 269–285 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gruska, J.: Quantum Computing. McGraw-Hill, London (1999); Japanese translation: Morikita Publishing Co., Ltd, Tokyo (2003)Google Scholar
  5. 5.
    Keller, R.: Towards a theory of universal speed-independent modules. IEEE Trans. Computers C–23, 21–33 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lee, J., Peper, F., Adachi, S., Morita, K.: An Asynchronous Cellular Automaton Implementing 2-State 2-Input 2-Output Reversed-Twin Reversible Elements. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 67–76. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Morita, K.: A Simple Universal Logic Element and Cellular Automata for Reversible Computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Morita, K.: A new universal logic element for reversible computing. In: Martin-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing, pp. 285–294. Taylor and Francis, London (2003)Google Scholar
  9. 9.
    Morita, K.: Reversible computing and cellular automata – A survey. Theoret. Comput. Sci. 395, 101–131 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Morita, K.: Constructing a reversible Turing machine by a rotary element, a reversible logic element with memory. Hiroshima University Institutional Repository (2010). http://ir.lib.hiroshima-u.ac.jp/00029224
  11. 11.
    Morita, K.: Reversible Computing (in Japanese). Kindai Kagaku-sha Co., Ltd, Tokyo (2012). ISBN: 978-4-7649-0422-4Google Scholar
  12. 12.
    Morita, K., Ogiro, T., Alhazov, A., Tanizawa, T.: Non-degenerate 2-state reversible logic elements with three or more symbols are all universal. J. Multiple-Valued Logic and Soft Computing 18, 37–54 (2012)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Morita, K., Ogiro, T., Tanaka, K., Kato, H.: Classification and Universality of Reversible Logic Elements with One-Bit Memory. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 245–256. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Morita, K., Suyama, R.: Compact Realization of Reversible Turing Machines by 2-State Reversible Logic Elements. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 280–292. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Mukai, Y., Morita, K.: Realizing reversible logic elements with memory in the billiard ball model. Int. J. of Unconventional Computing 8(1), 47–59 (2012)Google Scholar
  16. 16.
    Mukai, Y., Ogiro, T., Morita, K.: Universality problems on reversible logic elements with 1-bit memory. Int. J. Unconventional Computing (to appear)Google Scholar
  17. 17.
    Toffoli, T.: Computation and construction universality of reversible cellular automata. J. Comput. Syst. Sci. 15, 213–231 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Toffoli, T.: Reversible computing. Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  19. 19.
    Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 12–23 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations