Advertisement

Learning from Positive Data and Negative Counterexamples: A Survey

  • Sanjay Jain
  • Efim KinberEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

The article presents state of the art on learning languages in the limit from full positive data and negative counterexamples to overextending conjectures. In the main model, the learner can store in its long-term memory all data seen so far. Variants of this model are considered where the learner always gets least counterexamples, or counterexamples bounded by the maximal size of positive data seen. All these variants are also considered for the model, where the learner does not have long-term memory, but can use the last conjecture. Capabilities, properties, and relationships between these models (and some other variations) are surveyed. Also, a variant of the main model restricted to learning classes definable by finite automata by learners definable by finite automata is considered.

Keywords

Target Language Recursive Function Finite Automaton Iterative Learning Positive Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ang88]
    Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1988)MathSciNetGoogle Scholar
  2. [Bar74]
    Bārzdiņš, J.: Two theorems on the limiting synthesis of functions. In: Theory of Algorithms and Programs, vol. 1, pp. 82–88. Latvian State University (1974). In RussianGoogle Scholar
  3. [BCJ95]
    Baliga, G., Case, J., Jain, S.: Language learning with some negative information. Journal of Computer and System Sciences 51(5), 273–285 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BH70]
    Brown, R., Hanlon, C.: Derivational complexity and the order of acquisition in child speech. In: Hayes, J.R. (ed.) Cognition and the Development of Language, Wiley (1970)Google Scholar
  5. [Blu67]
    Blum, M.: A machine-independent theory of the complexity of recursive functions. Journal of the ACM 14(2), 322–336 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CJLZ99]
    Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning for bounded data mining. Information and Computation 152(1), 74–110 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [CL82]
    Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages and Programming. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  8. [CS83]
    Case, J., Smith, C.: Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25, 193–220 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [DPS86]
    Demetras, M., Post, K., Snow, C.: Feedback to first language learners: The role of repetitions and clarification questions. Journal of Child Language 13, 275–292 (1986)CrossRefGoogle Scholar
  10. [Gol67]
    Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [HPTS84]
    Hirsh-Pasek, K., Treiman, R., Schneiderman, M.: Brown and Hanlon revisited: Mothers’ sensitivity to ungrammatical forms. Journal of Child Language 11, 81–88 (1984)CrossRefGoogle Scholar
  12. [JK04]
    Jain, S., Kinber, E.: Learning Languages from Positive Data and Negative Counterexamples. In: Ben-David, S., Case, J., Maruoka, A. (eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp. 54–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. [JK06]
    Jain, S., Kinber, E.: Learning languages from positive data and a finite number of queries. Information and Computation 204(1), 123–175 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [JK07a]
    Jain, S., Kinber, E.: Iterative learning from positive data and negative counterexamples. Information and Computation 205(12), 1777–1805 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [JK07b]
    Jain, S., Kinber, E.: Learning languages from positive data and a limited number of short counterexamples. Theoretical Computer Science 389(1–2), 190–218 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [JK08]
    Jain, S., Kinber, E.: Learning languages from positive data and negative counterexamples. Journal of Computer and System Sciences 74(4), 431–456 (2008). Special Issue: Carl Smith memorial issueMathSciNetCrossRefzbMATHGoogle Scholar
  17. [JK11]
    Jain, S., Kinber, E.: Iterative learning from texts and counterexamples using additional information. Machine Learning 84, 291–333 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [JK12]
    Jain, S., Kinber, E.: Automatic Learning from Positive Data and Negative Counterexamples. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS (LNAI), vol. 7568, pp. 66–80. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. [JKS14]
    Jain, S., Kinber, E., Stephan, F.: Automatic learning from positive data and negative counterexamples (2014). ManuscriptGoogle Scholar
  20. [JLS10]
    Jain, S., Luo, Q., Stephan, F.: Learnability of Automatic Classes. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 321–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. [JLS12]
    Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. Journal of Computer and System Sciences 78(6), 1910–1927 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [LZ94]
    Lange, S., Zeugmann, T.: Characterization of language learning from informant under various monotonicity constraints. Journal of Experimental and Theoretical Artificial Intelligence 6, 73–94 (1994)CrossRefzbMATHGoogle Scholar
  23. [LZ96]
    Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of Computer and System Sciences 53(1), 88–103 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [LZ06]
    Li, Y., Zhang, W.: Simplify support vector machines by iterative learning. Neural Processsing Information - Letters and Reviews 10(1), 11–17 (2006)Google Scholar
  25. [OSW86]
    Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press (1986)Google Scholar
  26. [Pin79]
    Pinker, S.: Formal models of language learning. Cognition 7, 217–283 (1979)CrossRefGoogle Scholar
  27. [Rog67]
    Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill (1967). Reprinted by MIT Press in 1987Google Scholar
  28. [Shi86]
    Shinohara, T.: Studies on Inductive Inference from Positive Data. PhD thesis, Kyushu University, Kyushu, Japan (1986)Google Scholar
  29. [WC80]
    Wexler, K., Culicover, P.: Formal Principles of Language Acquisition. MIT Press (1980)Google Scholar
  30. [Wie76]
    Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. Journal of Information Processing and Cybernetics (EIK) 12(1–2), 93–99 (1976)MathSciNetzbMATHGoogle Scholar
  31. [ZL95]
    Zeugmann, T., Lange, S.: A guided tour across the boundaries of learning recursive languages. In: Lange, S., Jantke, K.P. (eds.) GOSLER 1994. LNCS, vol. 961, pp. 190–258. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of ComputingNational University of SingaporeSingaporeSingapore
  2. 2.Department of Computer ScienceSacred Heart UniversityFairfieldUSA

Personalised recommendations