Advertisement

Quantum Finite Automata: A Modern Introduction

  • A.C. Cem Say
  • Abuzer YakaryılmazEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

We present five examples where quantum finite automata (QFAs) outperform their classical counterparts. This may be useful as a relatively simple technique to introduce quantum computation concepts to computer scientists. We also describe a modern QFA model involving superoperators that is able to simulate all known QFA and classical finite automaton variants.

Keywords

Quantum State Classical State Regular Language Finite Automaton Acceptance Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M., DeMarrais, J., Huang, M.-D.A.: Quantum computability. SIAM Journal on Computing 26(5), 1524–1540 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Computer Science 287(1), 299–311 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory of Computing Systems 39(1), 165–188 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. Ambainis, Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS 1998, pp. 332–341 (1998). http://arxiv.org/abs/quant-ph/9802062
  5. 5.
    Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. Theoretical Computer Science 410(20), 1916–1922 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ambainis, A., Yakaryılmaz, A.: Automata: from Mathematics to Applications, chapter Automata and quantum computing (in preparation)Google Scholar
  7. 7.
    Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112(7), 289–291 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bertoni, A., Carpentieri, M.: Analogies and differences between quantum and stochastic automata. Theoretical Computer Science 262(1–2), 69–81 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Èsik and Z. Fülöp (eds.): DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Dwork, C., Stockmeyer, L.: A time complexity gap for two-way probabilistic finite-state automata. SIAM Journal on Computing 19(6), 1011–1123 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Geffert, V., Yakaryılmaz, A.: Classical Automata on Promise Problems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 126–137. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Golovkins, M., Kravtsev, M., Kravcevs, V.: Quantum Finite Automata and Probabilistic Reversible Automata: R-trivial Idempotent Languages. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 351–363. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Gruska, J.: Quantum Computing. McGraw-Hill (1999)Google Scholar
  14. 14.
    Gruska, J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch-Jozsa promise problem. Technical report (2014). arXiv:1402.7254
  15. 15.
    Gruska, J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact acceptance. Technical Report (2014). arXiv:1404.1689
  16. 16.
    Hirvensalo, M.: Quantum automata with open time evolution. International Journal of Natural Computing 1(1), 70–85 (2010)CrossRefGoogle Scholar
  17. 17.
    Klauck, H.: On quantum and probabilistic communication: Las vegas and one-way protocols. In: STOC 2000, pp. 644–651 (2000)Google Scholar
  18. 18.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75 (1997)Google Scholar
  19. 19.
    Li, L., Qiu, D., Zou, X., Li, L., Lihua, W., Mateus, P.: Characterizations of one-way general quantum finite automata. Theoretical Computer Science 419, 73–91 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoretical Computer Science 237(1–2), 275–306 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)zbMATHGoogle Scholar
  22. 22.
    Qiu, D., Li, L., Mateus, P., Gruska, J.: Quantum finite automata. Discrete Mathematics and Its Applications. In: Handbook on Finite State based Models and Applications. Chapman and Hall/CRC (2012)Google Scholar
  23. 23.
    Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–243 (1963)CrossRefzbMATHGoogle Scholar
  24. 24.
    Rashid, J., Yakaryılmaz, A.: Implications of Quantum Automata for Contextuality. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Shur, A.M., Yakaryılmaz, A.: Quantum, Stochastic, and Pseudo Stochastic Languages with Few States. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 327–339. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Yakaryılmaz, A., Cem Say, A. C.: Languages recognized by nondeterministic quantum finite automata. Quantum Information and Computation 10(9&10), 747–770 (2010)Google Scholar
  27. 27.
    Yakaryılmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 279(6), 873–892 (2011)Google Scholar
  28. 28.
    Zheng, S., Gruska, J., Qiu, D.: On the State Complexity of Semi-quantum Finite Automata. In: Dediu, A.-H., Mart\’ın-Vide, C., Sierra-Rodr\’ıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 601–612. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  29. 29.
    Zheng, S., Qiu, D., Li, L., Gruska, J.: One-Way Finite Automata with Quantum and Classical States. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer EngineeringBoğaziçi UniversityBebek, İstanbulTurkey
  2. 2.National Laboratory for Scientific ComputingPetrópolis, RJBrazil

Personalised recommendations