Advertisement

Maximally Entangled State in Pseudo-Telepathy Games

  • Laura MančinskaEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

A pseudo-telepathy game is a non-local game which can be won with probability one using quantum strategies but not using classical ones. Our central question is whether there exist two-party pseudo-telepathy games which cannot be won with probability one using a maximally entangled state. Towards answering this question, we develop conditions under which maximally entangled state suffices. Our main result shows that for any game \(G\), there exists a game \(\tilde{G}\) such that \(G\) admits a perfect strategy using a maximally entangled state if and only if \(\tilde{G}\) admits some perfect finite-dimensional quantum strategy.

Keywords

Nonlocal game Entanglement Projection game Maximally entangled state Pseudo-telepathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADGL02.
    Acín, A., Durt, T., Gisin, N., Latorre, J.I.: Quantum nonlocality in two three-level systems. Phys. Rev. A 65(5), 523–525 (2002). arXiv:quant-ph/0111143
  2. AGG05.
    Acín, A., Gill, R., Gisin, N.: Optimal Bell tests do not require maximally entangled states. Phys. Rev. Lett. 95(21), 210–402 (2005). arXiv:quant-ph/0506225
  3. BBT05.
    Brassard, G., Broadbent, A., Tapp, A.: Quantum pseudo-telepathy. Foundations of Physics 35(11), 1877–1907 (2005). arXiv:quant-ph/0407221
  4. CHTW04.
    Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of the 19th IEEE Annual Conference on Computational Complexity, pp. 236–249 (2004). arXiv:quant-ph/0404076
  5. CLMW10.
    Cubitt, T.S., Leung, D., Matthews, W., Winter, A.: Improving zero-error classical communication with entanglement. Phys. Rev. Lett. 104, 230503–230506 (2010). arXiv:0911.5300
  6. CM12.
    Cleve, R., Mittal, R.: Characterization of binary constraint system games (2012). arXiv:1209.2729
  7. CMN+07.
    Cameron, P.J., Montanaro, A., Newman, M.W., Severini, S., Winter, A.: On the quantum chromatic number of a graph. Electr. J. Comb., 14(1) (2007). arXiv:quant-ph/0608016
  8. Gru99.
    Gruska, J.: Quantum Computing. Osborne/McGraw-Hill (1999)Google Scholar
  9. JP11.
    Junge, M., Palazuelos, C.: Large violation of Bell inequalities with low entanglement. Commun. Math. Phys. 306(3), 695–746 (2011). arXiv:1007.3043
  10. LVB11.
    Liang, Y.-C., Vértesi, T., Brunner, N.: Semi-device-independent bounds on entanglement. Phys. Rev. A, 83(2), 022108, (2011). arXiv:1012.1513
  11. NC10.
    Michael, A.: Nielsen and Isaac L. Cambridge University Press, Chuang. Quantum computation and quantum information (2010)Google Scholar
  12. PV07.
    Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1–51 (2007). arXiv:quant-ph/0504163
  13. Reg12.
    Oded Regev. Bell violations through independent bases games. Quantum Inf. Comput. 12(1–2), 9–20, (2012). arXiv:1101.0576
  14. RM12.
    Roberson, D.E., Mančinska, L.: Graph homomorphisms for quantum players (2012). arXiv:1212.1724
  15. VW11.
    Vidick, T., Wehner, S.: More nonlocality with less entanglement. Phys. Rev. A, 83:052310 (May 2011). arXiv:1011.5206
  16. ZG08.
    Zohren, S., Gill, R.D.: Maximal violation of the Collins-Gisin-Linden-Massar-Popescu inequality for infinite dimensional states. Phys. Rev. Lett. 100(12), 120–406 (2008). arXiv:quant-ph/0612020

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore

Personalised recommendations