Skip to main content

Quantum Complexity of Boolean Matrix Multiplication and Related Problems

  • Chapter
  • First Online:
Computing with New Resources

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8808))

  • 971 Accesses

Abstract

This paper surveys the state of the art of research on quantum algorithms for problems related to matrix multiplication, such as triangle finding, Boolean matrix multiplication and Boolean product verification. The exposition highlights how simple tools from quantum computing, and in particular the technique known as quantum search, can be used in a multitude of situations to design quantum algorithms that outperform the best known classical algorithms. Some open problems in this area are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM Journal on Computing 37(1), 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. Soviet Mathematics Doklady (English translation) 11(5), 1209–1210 (1970)

    MATH  Google Scholar 

  3. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory of Computing 8(1), 69–94 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belovs, A.: Span programs for functions with constant-sized 1-certificates: extended abstract. In: Proceedings of STOC, pp. 77–84, 2012 (2012)

    Google Scholar 

  5. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)

    Google Scholar 

  6. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of SODA, pp. 880–889 (2006)

    Google Scholar 

  7. Childs, A.M., Kimmel, S., Kothari, R.: The Quantum Query Complexity of Read-Many Formulas. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 337–348. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Drucker, A., de Wolf, R.: Quantum Proofs for Classical Theorems. Number 2 in Graduate Surveys. Theory of Computing Library (2011)

    Google Scholar 

  9. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)

  10. Freivalds, R.: Probabilistic machines can use less running time. In: IFIP Congress, pp. 839–842 (1977)

    Google Scholar 

  11. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of STOC, pp. 212–219 (1996)

    Google Scholar 

  12. Gruska, J.: Quantum Challenges. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 1–28. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Gruska, J.: Quantum Computing. Mcgraw Hill (2000)

    Google Scholar 

  14. Gruska, J.: Algebraic Methods in Quantum Informatics. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 87–111. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J: ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

    Google Scholar 

  16. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeffery, S., Kothari, R., Magniez, F.: Improving Quantum Query Complexity of Boolean Matrix Multiplication Using Graph Collision. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 522–532. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Jeffery, S., Kothari, R., Magniez, F.: Nested quantum walks with quantum data structures. In: Proceedings of SODA, pp. 1474–1485 (2013)

    Google Scholar 

  19. Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceedings of FOCS, pp. 514–523 (2012)

    Google Scholar 

  20. Le Gall, F.: A Time-Efficient Output-Sensitive Quantum Algorithm for Boolean Matrix Multiplication. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 639–648. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of ISSAC 2014, pp. 296–303 (2014)

    Google Scholar 

  22. Le Gall, F., Nishimura, H.: Quantum Algorithms for Matrix Products over Semirings. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 331–343. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Lee, T., Magniez, F., Santha, M.: Improved quantum query algorithms for triangle finding and associativity testing. In: Proceedings of SODA, pp. 1486–1502 (2013)

    Google Scholar 

  24. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM Journal on Computing 37(2), 413–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of STOC, pp. 887–898 (2012)

    Google Scholar 

  27. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix and triangle problems. In: Proceedings of FOCS, pp. 645–654 (2010)

    Google Scholar 

  28. Williams, R.: Faster all-pairs shortest paths via circuit complexity. In: Proceedings of STOC 2014, pp. 664–673 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Le Gall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Le Gall, F. (2014). Quantum Complexity of Boolean Matrix Multiplication and Related Problems. In: Calude, C., Freivalds, R., Kazuo, I. (eds) Computing with New Resources. Lecture Notes in Computer Science(), vol 8808. Springer, Cham. https://doi.org/10.1007/978-3-319-13350-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13350-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13349-2

  • Online ISBN: 978-3-319-13350-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics