Abstract
This paper surveys the state of the art of research on quantum algorithms for problems related to matrix multiplication, such as triangle finding, Boolean matrix multiplication and Boolean product verification. The exposition highlights how simple tools from quantum computing, and in particular the technique known as quantum search, can be used in a multitude of situations to design quantum algorithms that outperform the best known classical algorithms. Some open problems in this area are also described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM Journal on Computing 37(1), 210–239 (2007)
Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. Soviet Mathematics Doklady (English translation) 11(5), 1209–1210 (1970)
Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory of Computing 8(1), 69–94 (2012)
Belovs, A.: Span programs for functions with constant-sized 1-certificates: extended abstract. In: Proceedings of STOC, pp. 77–84, 2012 (2012)
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)
Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of SODA, pp. 880–889 (2006)
Childs, A.M., Kimmel, S., Kothari, R.: The Quantum Query Complexity of Read-Many Formulas. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 337–348. Springer, Heidelberg (2012)
Drucker, A., de Wolf, R.: Quantum Proofs for Classical Theorems. Number 2 in Graduate Surveys. Theory of Computing Library (2011)
Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)
Freivalds, R.: Probabilistic machines can use less running time. In: IFIP Congress, pp. 839–842 (1977)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of STOC, pp. 212–219 (1996)
Gruska, J.: Quantum Challenges. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 1–28. Springer, Heidelberg (1999)
Gruska, J.: Quantum Computing. Mcgraw Hill (2000)
Gruska, J.: Algebraic Methods in Quantum Informatics. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 87–111. Springer, Heidelberg (2007)
Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J: ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)
Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)
Jeffery, S., Kothari, R., Magniez, F.: Improving Quantum Query Complexity of Boolean Matrix Multiplication Using Graph Collision. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 522–532. Springer, Heidelberg (2012)
Jeffery, S., Kothari, R., Magniez, F.: Nested quantum walks with quantum data structures. In: Proceedings of SODA, pp. 1474–1485 (2013)
Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceedings of FOCS, pp. 514–523 (2012)
Le Gall, F.: A Time-Efficient Output-Sensitive Quantum Algorithm for Boolean Matrix Multiplication. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 639–648. Springer, Heidelberg (2012)
Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of ISSAC 2014, pp. 296–303 (2014)
Le Gall, F., Nishimura, H.: Quantum Algorithms for Matrix Products over Semirings. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 331–343. Springer, Heidelberg (2014)
Lee, T., Magniez, F., Santha, M.: Improved quantum query algorithms for triangle finding and associativity testing. In: Proceedings of SODA, pp. 1486–1502 (2013)
Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM Journal on Computing 37(2), 413–424 (2007)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)
Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of STOC, pp. 887–898 (2012)
Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix and triangle problems. In: Proceedings of FOCS, pp. 645–654 (2010)
Williams, R.: Faster all-pairs shortest paths via circuit complexity. In: Proceedings of STOC 2014, pp. 664–673 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Le Gall, F. (2014). Quantum Complexity of Boolean Matrix Multiplication and Related Problems. In: Calude, C., Freivalds, R., Kazuo, I. (eds) Computing with New Resources. Lecture Notes in Computer Science(), vol 8808. Springer, Cham. https://doi.org/10.1007/978-3-319-13350-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-13350-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13349-2
Online ISBN: 978-3-319-13350-8
eBook Packages: Computer ScienceComputer Science (R0)