Quantum Complexity of Boolean Matrix Multiplication and Related Problems

  • François Le GallEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)


This paper surveys the state of the art of research on quantum algorithms for problems related to matrix multiplication, such as triangle finding, Boolean matrix multiplication and Boolean product verification. The exposition highlights how simple tools from quantum computing, and in particular the technique known as quantum search, can be used in a multitude of situations to design quantum algorithms that outperform the best known classical algorithms. Some open problems in this area are also described.


Quantum Algorithm Query Complexity Classical Algorithm Boolean Matrix Quantum Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM Journal on Computing 37(1), 210–239 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. Soviet Mathematics Doklady (English translation) 11(5), 1209–1210 (1970)zbMATHGoogle Scholar
  3. 3.
    Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. Theory of Computing 8(1), 69–94 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belovs, A.: Span programs for functions with constant-sized 1-certificates: extended abstract. In: Proceedings of STOC, pp. 77–84, 2012 (2012)Google Scholar
  5. 5.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)Google Scholar
  6. 6.
    Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of SODA, pp. 880–889 (2006)Google Scholar
  7. 7.
    Childs, A.M., Kimmel, S., Kothari, R.: The Quantum Query Complexity of Read-Many Formulas. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 337–348. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Drucker, A., de Wolf, R.: Quantum Proofs for Classical Theorems. Number 2 in Graduate Surveys. Theory of Computing Library (2011)Google Scholar
  9. 9.
    Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)
  10. 10.
    Freivalds, R.: Probabilistic machines can use less running time. In: IFIP Congress, pp. 839–842 (1977)Google Scholar
  11. 11.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of STOC, pp. 212–219 (1996)Google Scholar
  12. 12.
    Gruska, J.: Quantum Challenges. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 1–28. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Gruska, J.: Quantum Computing. Mcgraw Hill (2000)Google Scholar
  14. 14.
    Gruska, J.: Algebraic Methods in Quantum Informatics. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 87–111. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J: ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jeffery, S., Kothari, R., Magniez, F.: Improving Quantum Query Complexity of Boolean Matrix Multiplication Using Graph Collision. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 522–532. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Jeffery, S., Kothari, R., Magniez, F.: Nested quantum walks with quantum data structures. In: Proceedings of SODA, pp. 1474–1485 (2013)Google Scholar
  19. 19.
    Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceedings of FOCS, pp. 514–523 (2012)Google Scholar
  20. 20.
    Le Gall, F.: A Time-Efficient Output-Sensitive Quantum Algorithm for Boolean Matrix Multiplication. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 639–648. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of ISSAC 2014, pp. 296–303 (2014)Google Scholar
  22. 22.
    Le Gall, F., Nishimura, H.: Quantum Algorithms for Matrix Products over Semirings. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 331–343. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  23. 23.
    Lee, T., Magniez, F., Santha, M.: Improved quantum query algorithms for triangle finding and associativity testing. In: Proceedings of SODA, pp. 1486–1502 (2013)Google Scholar
  24. 24.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM Journal on Computing 37(2), 413–424 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Vassilevska Williams, V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of STOC, pp. 887–898 (2012)Google Scholar
  27. 27.
    Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix and triangle problems. In: Proceedings of FOCS, pp. 645–654 (2010)Google Scholar
  28. 28.
    Williams, R.: Faster all-pairs shortest paths via circuit complexity. In: Proceedings of STOC 2014, pp. 664–673 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science Graduate, School of Information Science and TechnologyThe University of TokyoTokyoJapan

Personalised recommendations