Advertisement

Complexity of Promise Problems on Classical and Quantum Automata

  • Maria Paola Bianchi
  • Carlo MereghettiEmail author
  • Beatrice Palano
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

We consider the promise problem \(A^{N,r_1,r_2}\) on a unary alphabet \({\left\{ \sigma \right\} }\) studied by Gruska et al. in [21]. This problem is formally defined as the pair \(A^{N,r_1,r_2}=(A^{N,r_1}_{yes},A^{N,r_2}_{no})\), with \(0\le r_1\ne r_2<N\), \(A^{N,r_1}_{yes}={\left\{ \sigma ^n \ \mid \ n\equiv r_1 \mod N\right\} }\) and \(A^{N,r_2}_{no}={\left\{ \sigma ^n \ \mid \ n \equiv r_2 \mod N\right\} }\). There, it is shown that a measure-once one-way quantum automaton can solve exactly \(A^{N,r_1,r_2}\) with only \(3\) basis states, while any one-way deterministic finite automaton requires \(d\) states, \(d\) being the smallest integer such that \(d\mid N\) and \(d \not \mid (r_2-r_1) \mod N\). Here, we introduce the promise problem \({\textsc {Diof}}^{\,{a},N}_{r_1,r_2}\) as an extension of \(A^{N,r_1,r_2}\) to general alphabets. Even for this problem, we show the same descriptional superiority of the quantum paradigm over one-way deterministic automata. Moreover, we prove that even by adding features to classical automata, namely nondeterminism, probabilism, two-way motion, we cannot obtain automata for \(A^{N,r_1,r_2}\) and \({\textsc {Diof}}^{\,{a},N}_{r_1,r_2}\) smaller than one-way deterministic.

Keywords

classical and quantum automata promise problem descriptional complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambainis, A.: The complexity of probabilistic versus deterministic finite automata. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 233–238. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.: Algebraic results on quantum automata. Theory of Comp. Sys. 39, 165–188 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ambainis, A., Yakaryilmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112, 289–291 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Computer Science 287, 299–311 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertoni, A., Carpentieri, M.: Regular languages accepted by quantum automata. Information and Computation 165, 174–182 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Bertoni, A., Mereghetti, C., Palano, B.: Small size quantum automata recognizing some regular languages. Theoretical Computer Science 340, 394–407 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bertoni, A., Mereghetti, C., Palano, B.: Some formal tools for analyzing quantum automata. Theoretical Computer Science 356, 14–25 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bertoni, A., Mereghetti, C., Palano, B.: Trace monoids with idempotent generators and measure-only quantum automata. Natural Computing 9, 383–395 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bianchi, M.P., Mereghetti, C., Palano, B.: Size Lower Bounds for Quantum Automata. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 19–30. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Bianchi, M.P., Mereghetti, C., Palano, B., Pighizzini, G.: On the size of unary probabilistic and nondeterministic automata. Fund. Informaticae 112, 119–135 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bianchi, M.P., Palano, B.: Behaviours of unary quantum automata. Fund. Informaticae 104, 1–15 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bianchi, M.P., Pighizzini, G.: Normal forms for unary probabilistic automata. Theoretical Informatics and Applications 46, 495–510 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM J. Computing 5, 1456–1478 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science 47, 149–158 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum Automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Gramlich, G.: Probabilistic and Nondeterministic Unary Automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 460–469. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Gruska, J.: Quantum Computing. McGraw-Hill, London, New York (1999)zbMATHGoogle Scholar
  19. 19.
    Gruska, J.: Descriptional complexity issues in quantum computing. J. Automata, Languages and Combinatorics 5, 191–218 (2000)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gruska J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch-Jozsa promise problem (2014), http://arxiv.org/abs/1402.7254arXiv:1402.7254
  21. 21.
    Gruska J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact acceptance (2014). http://arxiv.org/abs/1404.1689arXiv:1404.1689
  22. 22.
    Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Natural Computing Research 1, 70–85 (2010)CrossRefGoogle Scholar
  23. 23.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (2001)zbMATHGoogle Scholar
  24. 24.
    Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Kondacs A., Watrous, J.: On the power of quantum finite state automata. In: Proc. 38th Symposium on Foundations of Computer Science (FOCS 1997), pp. 66–75 (1997)Google Scholar
  26. 26.
    Kunc, M., Okhotin, A.: Describing Periodicity in Two-Way Deterministic Finite Automata Using Transformation Semigroups. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Mercer, M.: Lower bounds for generalized quantum finite automata. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 373–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mereghetti, C., Palano, B.: Quantum finite automata with control language. Theoretical Informatics and Applications 40, 315–332 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Mereghetti, C., Palano, B.: Quantum automata for some multiperiodic languages. Theoretical Computer Science 387, 177–186 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata. Theoretical Informatics and Applications 5, 477–490 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Meyer, A., Fischer, M.: Economy of description by automata, grammars, and formal systems. In: Proc. 12th Annual IEEE Symposium on Switching and Automata Theory, pp. 188–91 (1971)Google Scholar
  34. 34.
    Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus classical pushdown automata in exact computation. IPSJ Digital Courier 1, 426–435 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: Proc. 40th Symposium on Foundations of Computer Science (FOCS 1999), pp. 369–376 (1999)Google Scholar
  36. 36.
    Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York, London (1971)zbMATHGoogle Scholar
  37. 37.
    Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)CrossRefzbMATHGoogle Scholar
  38. 38.
    Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM J. Res. Develop. 3, 198–200 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Shilov,G: Linear Algebra. Prentice Hall (1971) (Reprinted by Dover, 1977)Google Scholar
  41. 41.
    Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System Sci. 21, 195–202 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zheng, S., Gruska, J., Qiu, D.: On the State Complexity of Semi-quantum Finite Automata. In: Dediu, A.-H., Mart\’ın-Vide, C., Sierra-Rodr\’ıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 601–612. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  43. 43.
    Zheng, S., Qiu, D., Gruska, J., Li, L., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theoretical Computer Science 499, 98–112 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zheng, S., Qiu, D., Li, L., Gruska, J.: One-Way finite automata with quantum and classical states. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maria Paola Bianchi
    • 1
  • Carlo Mereghetti
    • 1
    Email author
  • Beatrice Palano
    • 1
  1. 1.Dipartimento di InformaticaUniversitá degli Studi di Milano via Comelico 39MilanoItaly

Personalised recommendations