Computing Boolean Functions via Quantum Hashing

  • Farid AblayevEmail author
  • Alexander Vasiliev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)


In this paper we show a computational aspect of the quantum hashing technique. In particular we apply it for computing Boolean functions in the model of read-once quantum branching programs based on the properties of specific polynomial presentation of those functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablayev, F.M., Vasiliev, A.V.: Cryptographic quantum hashing. Laser Physics Letters 11(2), 025202 (2014).
  2. 2.
    Ablayev, F., Andrianov, S., Moiseev, S., Vasiliev, A.: Encoded universality of quantum computations on the multi-atomic ensembles in the qed cavity. Tech. Rep. arXiv:1109.0291 [quant-ph]. Cornell University Library (September 2011).
  3. 3.
    Ablayev, F., Gainutdinova, A., Karpinski, M.: On Computational Power of Quantum Branching Programs. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 59–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the computational power of probabilistic and quantum branching programs of constant width. Information and Computation 203, 145–162 (2005).
  5. 5.
    Ablayev, F., Vasiliev, A.: Algorithms for quantum branching programs based on fingerprinting. Electronic Proceedings in Theoretical Computer Science 9, 1–11 (2009).
  6. 6.
    Ablayev, F., Andrianov, S., Moiseev, S., Vasiliev, A.: Quantum computer with atomic logical qubits encoded on macroscopic three-level systems in common quantum electrodynamic cavity. Lobachevskii Journal of Mathematics 34(4), 291–303 (2013).
  7. 7.
    Agrawal, V., Lee, D., Wozniakowski, H.: Numerical computation of characteristic polynomials of boolean functions and its applications. Numerical Algorithms 17, 261–278 (1998).
  8. 8.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001).
  9. 9.
    Deutsch, D.: Quantum computational networks. Royal Society of London Proceedings Series A 425, 73–90 (1989).
  10. 10.
    Gottesman, D., Chuang, I.: Quantum digital signatures. Tech. Rep. arXiv:quant-ph/0105032. Cornell University Library (November 2001).
  11. 11.
    Jain, J., Abraham, J.A., Bitner, J., Fussell, D.S.: Probabilistic verification of boolean functions. Formal Methods in System Design 1, 61–115 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nakanishi, M., Hamaguchi, K., Kashiwabara, T.: Ordered Quantum Branching Programs Are More Powerful than Ordered Probabilistic Branching Programs under a Bounded-Width Restriction. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 467–476. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Razborov, A.A., Szemeredi, E., Wigderson, A.: Constructing small sets that are uniform in arithmetic progressions. Combinatorics, Probability & Computing 2, 513–518 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded nonuniform quantum complexity. Theoretical Computer Science 334(1–3), 177–225 (2005).
  15. 15.
    Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM Monographs on Discrete Mathematics and Applications. SIAM Press (2000)Google Scholar
  16. 16.
    de Wolf, R.: Quantum Computing and Communication Complexity. Ph.D. thesis, University of Amsterdam (2001)Google Scholar
  17. 17.
    Yao, A.C.C.: Quantum circuit complexity. In: Proceedings of Thirty-fourth IEEE Symposium on Foundations of Computer Science, pp. 352–361. IEEE Computer Society, Palo Alto (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussian Federation

Personalised recommendations