Advertisement

Time-Optimum Smaller-State Synchronizers for Cellular Automata

  • Hiroshi UmeoEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

Synchronization of large-scale networks is an important and fundamental computing primitive in parallel and distributed systems. The synchronization in cellular automata, known as the firing squad synchronization problem (FSSP), has been studied extensively for more than fifty years, and a rich variety of synchronization algorithms has been proposed not only for one-dimensional but also for two-dimensional, even multi-dimensional cellular arrays. In the present paper, we construct an overview of the study of the FSSP algorithms developed so far, focusing on time-optimum smaller-state solutions to the FSSP.

Keywords

Cellular Automaton Transition Rule Synchronization Algorithm Transition Table Cellular Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balzer, R.: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control 10, 22–42 (1967)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beyer, W.T.: Recognition of topological invariants by iterative arrays. Ph.D. Thesis. MIT, pp. 144 (1969)Google Scholar
  3. 3.
    Gerken, H.: Über Synchronisations - Probleme bei Zellularautomaten. Diplomarbeit, Institut für Theoretische Informatik, Technische Universität Braunschweig, pp. 50 (1987)Google Scholar
  4. 4.
    Goto, E.: A minimal time solution of the firing squad problem. Dittoed course notes for Applied Mathematics 298, Harvard University, with an illustration in color, pp. 52–59 (1962)Google Scholar
  5. 5.
    Grasselli, A.: Synchronization of cellular arrays: The firing squad problem in two dimensions. Information and Control 28, 113–124 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gruska, J., Torre, S.L., Parente, M.: The firing squad synchronization problem on squares, toruses and rings. Intern. J. of Foundations of Computer Science 18(3), 637–654 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Herman, G.T.: Models for cellular interactions in development without polarity of individual cells, I. General description and the problem of universal computing ability. International Journal of Systems Sciences 2(2), 271–289 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Herman, G.T.: Models for cellular interactions in development without polarity of individual cells, II. Problems of synchronization and regulation. International Journal of Systems Sciences 3(2), 149–175 (1972)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kobuchi, Y.: A note on symmetrical cellular spaces. Information Processing Letters 25, 413–415 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theoretical Computer Science 50, 183–238 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.) Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading (1964)Google Scholar
  12. 12.
    Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Information and Control 12, 212–220 (1968)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ng, W.L.: 20119: Partial solutions for the firing squad synchronization problem on rings. UMI Dissertation Publishing, Ann Arbor, pp. 363 (2011)Google Scholar
  14. 14.
    Sanders, P.: Massively parallel search for transition-tables of polyautomata. In: Jesshope, C., Jossifov, V., Wilhelmi, W. (eds.) Proc. of the VI International Workshop on Parallel Processing by Cellular Automata and Arrays. Akademie, pp. 99–108 (1994)Google Scholar
  15. 15.
    Settle, A., Simon, J.: Smaller solutions for the firing squad. Theoretical Computer Science 276, 83–109 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shinahr, I.: Two- and three-dimensional firing squad synchronization problems. Information and Control 24, 163–180 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Szwerinski, H.: Time-optimum solution of the firing-squad-synchronization-problem for \(n\)-dimensional rectangles with the general at an arbitrary position. Theoretical Computer Science 19, 305–320 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Szwerinski, H.: Symmetrical one-dimensional cellular spaces. Information and Control 67, 163–172 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Umeo, H.: Firing squad synchronization algorithms for two-dimensional cellular automata. International Journal of Cellular Automata 4, 1–20 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Umeo, H.: Firing squad synchronization problem in cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 4, pp. 3537–3574 (2009)Google Scholar
  21. 21.
    Umeo, H.: Problem solving on one-bit-communication cellular automata. In: Hoekstra, A.G., Kroc, J., Sloot, P.M.A.: Simulating Complex Systems by Cellular Automata, ch. 6. Springer, Heidelberg, pp. 117–144 (2010)Google Scholar
  22. 22.
    Umeo, H.: Recent Developments in Firing Squad Synchronization Algorithms: Smaller Solutions. In: Proc. of the 3rd International Conference on Networking and Computing, pp. 371–378 (2012)Google Scholar
  23. 23.
    Umeo, H.: Synchronizing square arrays in optimum-time. Int. J. General Systems 41(6), 617–631 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Umeo, H., Hisaoka, M., Akiguchi, S.: A twelve-state optimum-time synchronization algorithm for two-dimensional rectangular cellular arrays. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 214–223. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Umeo, H., Hisaoka, M., Sogabe, T.: A survey on optimum-time firing squad synchronization algorithms for one-dimensional cellular automata. Intern. J. of Unconventional Computing 1, 403–426 (2005)zbMATHGoogle Scholar
  26. 26.
    Umeo, H., Hisaoka, M., Michisaka, K., Nishioka, K., Maeda, M.: Some new generalized synchronization algorithms and their implementations for large scale cellular automata. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 276–286. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Umeo, H., Kamikawa, N., Yunès, J.B.: A family of smallest symmetrical four-state firing squad synchronization protocols for ring arrays. Parallel Processing Letters 19(2), 299–313 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Umeo, H., Kamikawa, N., Nishioka, K., Akiguchi, S.: Generalized Firing Squad Synchronization Protocols for One-Dimensional Cellular Automata - A Survey. Acta Physica Polonica B,Proceedings Supplement 3, 267–289 (2010)Google Scholar
  29. 29.
    Umeo, H., Kubo, K.: A seven-state time-optimum square synchronizer. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 219–230. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Umeo, H., Maeda, M., Fujiwara, N.: An efficient mapping scheme for embedding any one-dimensional firing squad synchronization algorithm onto two-dimensional arrays. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 69–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Umeo, H., Maeda, M., Hisaoka, M., Teraoka, M.: A state-efficient mapping scheme for designing two-dimensional firing squad synchronization algorithms. Fundamenta Informaticae 74(4), 603–623 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Umeo, H., Maeda, M., Hongyo, K.: A design of symmetrical six-state 3n-step firing squad synchronization algorithms and their implementations. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 157–168. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Umeo, H., Nishide, K., Kubo, K.: A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata. DCM 2012, 151–165 (2012)Google Scholar
  34. 34.
    Umeo, H., Uchino, H., Nomura, A.: How to synchronize square arrays in optimum-time. In: Proc. of the 2011 International Conference on High Performance Computing and Simulation (HPCS 2011), pp. 801–807. IEEE (2011)Google Scholar
  35. 35.
    Umeo, H., Yamawaki, T., Nishide, K.: An optimu-time firing squad synchronization algorithm for two-dimensional rectangle arrays - Freezing-thawing technique based. International Journal of Cellular Automata 7, 31–46 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Umeo, H., Yanagihara, T.: A small five-state non-optimum-time solution to the firing squad synchronization problem - A geometrical approach. Fundamenta Informaticane 91, 161–178 (2009)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Umeo, H., Yanagihara, T.: Smallest implementations of optimum-time firing squad synchronization algorithms for one-bit-communication cellular automata. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 210–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  38. 38.
    Varshavsky, V.I., Marakhovsky, V.B., Peschansky, V.A.: Synchronization of Interacting Automata. Mathematical Systems Theory 4(3), 212–230 (1970)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Vollmar, R.: Some remarks about the “Efficiency” of polyautomata. International Journal of Theoretical Physics 21(12), 1007–1015 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Waksman, A.: An optimum solution to the firing squad synchronization problem. Information and Control 9(1966), 66–78 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Yunès, J.B.: A 4-states algebraic solution to linear cellular automata synchronization. Information Processing Letters 107(2), 71–75 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of Osaka Electro-CommunicationNeyagawa-shi, Hastu-choOsakaJapan

Personalised recommendations