Skip to main content
  • 687 Accesses

Abstract

In this chapter, we give a survey on the mathematical structure of the system of RET, which is strictly related to the mathematical problems of hyperbolic systems in balance form with a convex entropy density. We summarize the main results: The proof of the existence of the main field in terms of which a system becomes symmetric, and several properties derived from the qualitative analysis concerning symmetric hyperbolic systems. In particular, the Cauchy problem is well-posed locally in time, and if the so-called K-condition is satisfied, there exist global smooth solutions provided that the initial data are sufficiently small. Moreover the main field permits to identify natural subsystems and in this way we have a structure of nesting theories. The main property of these subsystems is that the characteristic velocities satisfy the so-called sub-characteristic conditions that imply, in particular, that the maximum characteristic velocity does not decrease when the number of equations increases. Another beautiful general property is the compatibility of the balance laws with the Galilean invariance that dictates the precise dependence of the field equations on the velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definition and the properties remain valid for prescribed values of \(\mathbf{w}_{{\ast}}^{{\prime}}\) that depend on x Ī± in an arbitrary manner. In this case the principal subsystem is not autonomous [13].

References

  1. I. MĆ¼ller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. (Springer, New York, 1998)

    BookĀ  MATHĀ  Google ScholarĀ 

  2. K.O. Friedrichs, P.D. Lax, Systems of conservation equation with a convex extension. Proc. Natl. Acad. Sci. USA 68, 1686 (1971)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. T. Ruggeri, A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann. Inst. H. PoincarƩ, Sect. A 34, 65 (1981)

    Google ScholarĀ 

  4. G. Boillat, Sur lā€™existence et la recherche dā€™Ć©quations de conservation supplĆ©mentaires pour les systĆ©mes hyperboliques. C. R. Acad. Sci. Paris A 278, 909 (1974)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. S.K. Godunov, An interesting class of quasilinear systems. Sov. Math. 2, 947 (1961)

    MATHĀ  Google ScholarĀ 

  6. G. Boillat, in CIME Course, Recent Mathematical Methods in Nonlinear Wave Propagation, ed. by T. Ruggeri. Lecture Notes in Mathematics, vol. 1640 (Springer, Berlin, 1995), pp. 103ā€“152

    Google ScholarĀ 

  7. I.-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131 (1972)

    MATHĀ  Google ScholarĀ 

  8. G. Boillat, Involutions des systĆØmes conservatifs. C. R. Acad. Sci. Paris 307, 891 (1988)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. C.M. Dafermos, Quasilinear hyperbolic systems with involutions. Arch. Ration. Mech. Anal. 94, 373 (1986)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. T. Ruggeri, Symmetric hyperbolic system of conservative equations for a viscous conducting fluid. Acta Mech. 47, 167 (1983)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of the extended thermodynamics. Continuum Mech. Thermodyn. 1, 3 (1989)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  12. T. Ruggeri, Convexity and symmetrization in relativistic theories. Privileged time-like congruence and entropy. Continuum Mech. Thermodyn. 2, 163 (1990)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. G. Boillat, T. Ruggeri, Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305 (1997)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. G. Boillat, T. Ruggeri, On the shock structure problem for hyperbolic system of balance laws and convex entropy. Continuum Mech. Thermodyn. 10, 285 (1998)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. T. Ruggeri, Maximum of entropy density in equilibrium and minimax principle for an hyperbolic system of balance laws contributions to continuum theories, anniversary volume for Krzysztof Wilmanski, ed. by B. Albers. WIAS-Report No. 18 (2000), pp. 207ā€“214

    Google ScholarĀ 

  16. T. Ruggeri, D. Serre, Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Q. Appl. Math. 62, 163 (2004)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. S. Kawashima, Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. R. Soc. Edinb. 106A, 169 (1987)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  18. A.E. Fischer, J.E. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system. Commun. Math. Phys. 28, 1 (1972)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables (Springer, New York, 1984)

    BookĀ  MATHĀ  Google ScholarĀ 

  20. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften, vol. 325, 3rd edn. (Springer, Berlin, 2010)

    Google ScholarĀ 

  21. Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Ration. Mech. Anal. 150, 255 (1999)

    ArticleĀ  Google ScholarĀ 

  22. Y. Shizuta, S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249 (1985)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  23. B. Hanouzet, R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Ration. Mech. Anal. 169, 89 (2003)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  24. W.-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172, 247 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  25. S. Bianchini, B. Hanouzet, R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60, 1559 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  26. C.M. Dafermos, Periodic BV solutions of hyperbolic balance laws with dissipative source. J. Math. Anal. Appl. 428, 405 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  27. J. Lou, T. Ruggeri, Acceleration waves and weak Shizuta-Kawashima condition. Suppl. Rend. Circ. Mat. Palermo ā€œNon Linear Hyperbolic Fields and Waves. A Tribute to Guy Boillatā€ 78, 187 (2006)

    Google ScholarĀ 

  28. T. Ruggeri, Global existence of smooth solutions and stability of the constant state for dissipative hyperbolic systems with applications to extended thermodynamics, in Trends and Applications of Mathematics to Mechanics, STAMM 2002 (Springer, Berlin, 2005)

    Google ScholarĀ 

  29. T. Ruggeri, Entropy principle and relativistic extended thermodynamics: global existence of smooth solutions and stability of equilibrium state. Il Nuovo Cimento B 119, 809 (2004); Lecture Notes of the International Conference in honour of Y. Choquet-Bruhat: Analysis, Manifolds and Geometric Structures in Physics, ed. by G. Ferrarese, T. Ruggeri (2004)

    Google ScholarĀ 

  30. T. Ruggeri, Extended relativistic thermodynamics, in Y. Choquet Bruhat, General Relativity and the Einstein equations, (Oxford University Press, Oxford, 2009), pp. 334ā€“340

    Google ScholarĀ 

  31. T. Ruggeri, S. Simić, On the hyperbolic system of a mixture of eulerian fluids: a comparison between single and multi-temperature models. Math. Methods Appl. Sci. 30, 827 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  32. S. Pennisi, T. Ruggeri, A new method to exploit the entropy principle and galilean invariance in the macroscopic approach of extended thermodynamics. Ricerche Mat. 55, 159 (2006)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruggeri, T., Sugiyama, M. (2015). Mathematical Structure. In: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham. https://doi.org/10.1007/978-3-319-13341-6_2

Download citation

Publish with us

Policies and ethics