Skip to main content
  • 665 Accesses

Abstract

We present a survey on recent results concerning some different models of a mixture of compressible fluids. In particular, we discuss the most realistic case of a mixture where each constituent has its own temperature (MT). We first compare the solutions of this model with the one with unique common temperature (ST). In the case of Eulerian fluids, it will be shown that the corresponding ST differential system is a principal subsystem of the MT system. Global behavior of smooth solutions for large time for both systems will also be discussed through the application of the Shizuta-Kawashima K-condition. Then we introduce the concept of the average temperature of a mixture based on the consideration that the internal energy of the mixture is the same as that in the case of a single-temperature mixture. As a consequence, it is shown that the entropy of the mixture reaches a local maximum in equilibrium. Through the procedure of the Maxwellian iteration, a new constitutive equation for nonequilibrium temperatures of constituents is obtained in a classical limit, together with the Fick law for the diffusion flux. Finally, in order to justify the Maxwellian iteration, we present, for dissipative fluids, a possible approach to a classical theory of mixtures with the multi-temperature. We prove that the differences of temperatures between the constituents imply the existence of a new dynamic pressure even if fluids have zero bulk viscosities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1991)

    MATHĀ  Google ScholarĀ 

  2. J.M. Burgers, Flow Equations for Composite Gases (Academic, New York, 1969)

    MATHĀ  Google ScholarĀ 

  3. D. Kannappan, T.K. Bose, Transport properties of a two-temperature argon plasma. Phys. Fluids 20(1), 1668 (1977)

    Google ScholarĀ 

  4. D. Kannappan, T.K. Bose, Transport properties of a two-temperature helium plasma. Phys. Fluids 23(7), 1473 (1980)

    Google ScholarĀ 

  5. T.K. Bose, R.V. Seeniraj, Two-temperature noble gas plasmas. I. Thermodynamics and transport coefficients. J. Indian Inst. Sci. 64(10), 181 (1983)

    Google ScholarĀ 

  6. A. Sellitto, V.A. Cimmelli, D. Jou, Influence of electron and phonon temperature on the efficiency of thermoelectric conversion. Int. J. Heat Mass Transf. 80, 344 (2015)

    ArticleĀ  Google ScholarĀ 

  7. K. Xu, X. He, C. Cai, Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations. J. Comput. Phys. 227, 6779 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. C. Truesdell, Rational Thermodynamics (McGraw-Hill, New York, 1969)

    Google ScholarĀ 

  9. I. MĆ¼ller, Thermodynamics (Pitman, Boston/London, 1985). ISBN: 0-273-08577-8

    MATHĀ  Google ScholarĀ 

  10. I. MĆ¼ller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. (Springer, New York, 1998)

    BookĀ  MATHĀ  Google ScholarĀ 

  11. I. MĆ¼ller, A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1 (1968)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  12. K. Hutter, Continuum Methods of Physical Modeling (Springer, New York, 2004)

    BookĀ  MATHĀ  Google ScholarĀ 

  13. K.R. Rajagopal, L. Tao, Mechanics of Mixtures (World Scientific, Singapore, 1995)

    MATHĀ  Google ScholarĀ 

  14. K. Wilmanski, Continuum Thermodynamicsā€”Part I: Foundations (World Scientific, Singapore, 2008)

    Google ScholarĀ 

  15. R.J. Atkin, R.E. Craine, Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209 (1976)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  16. T. Ruggeri, S. Simić, On the hyperbolic system of a mixture of eulerian fluids: a comparison between single and multi-temperature models. Math. Methods Appl. Sci. 30, 827 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  17. H. Gouin, T. Ruggeri, Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids. Phys. Rev. E 78, 016303 (2008)

    ArticleĀ  Google ScholarĀ 

  18. T. Ruggeri, S. Simić, Average temperature and maxwellian iteration in multitemperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    ArticleĀ  Google ScholarĀ 

  19. T. Ruggeri, Multi-temperature mixture of fluids. Theor. Appl. Mech. 36, 207 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. T. Ruggeri, Some recent results on multi-temperature mixture of fluids, in Continuous Media with Microstructure, ed. by B. Albers (Springer, Berlin/Heidelberg, 2010), pp. 39-57. ISBN: 978-3-642-11444-1

    ChapterĀ  Google ScholarĀ 

  21. S. Simić, M. Pavić-Čolić, D. Madjarević, Non-equilibrium mixtures of gases: modelling and computation. Riv. Mat. Univ. Parma 6ā€“1 (2015, in press)

    Google ScholarĀ 

  22. T.K. Bose, High-Temperature Gas Dynamics (Springer, Berlin, 2003)

    Google ScholarĀ 

  23. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1963)

    Google ScholarĀ 

  24. C. Eckart, The thermodynamics of irreversible processes. II. Fluid mixtures. Phys. Rev. 58, 269 (1940)

    Google ScholarĀ 

  25. L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931); Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265 (1931)

    Google ScholarĀ 

  26. T. Ruggeri, S. Simić, Nonlinear wave propagation in binary mixtures of Euler fluids. Contin. Mech. Thermodyn. 16, 125 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  27. T. Ruggeri, Global existence, stability and non linear wave propagation in binary mixtures, in Proceedings of the International Meeting in honour of the Salvatore Rionero 70th Birthday, Napoli 2003, ed. by P. Fergola, F. Capone, M. Gentile, G. Guerriero (World Scientific, Singapore, 2004), pp. 205ā€“214

    Google ScholarĀ 

  28. T. Ruggeri, Some recent mathematical results in mixtures theory of euler fluids, in Proceedings WASCOM 2003, ed. by R. Monaco, S. Pennisi, S. Rionero, T. Ruggeri (World Scientific, Singapore, 2004), pp. 441ā€“454

    Google ScholarĀ 

  29. J. Lou, T. Ruggeri, Acceleration waves and weak Shizuta-Kawashima condition. Suppl. Rend. Circ. Mat. Palermo ā€œNon Linear Hyperbolic Fields and Waves. A tribute to Guy Boillatā€ 78, 187 (2006)

    Google ScholarĀ 

  30. E. Ikenberry, C. Truesdell, On the pressure and the flux of energy in a gas according to Maxwellā€™s kinetic theory. J. Ration. Mech. Anal. 5, 1 (1956)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  31. T. Ruggeri, S. Simić, in Proceedings Mathematical Physics Models and Engineering Sciences (Liguori Editore, Napoli, 2008), p. 455

    Google ScholarĀ 

  32. T. Ruggeri, J. Lou, Heat conduction in multi-temperature mixtures of fluids: the role of the average temperature. Phys. Lett. A 373, 3052 (2009)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  33. T. Ruggeri, S. Simić, in Asymptotic Methods in Non Linear Wave Phenomena, ed. by T. Ruggeri, M. Sammartino (World Scientific, Singapore, 2007), p. 186

    ChapterĀ  Google ScholarĀ 

  34. T. Ruggeri, S. Simić, Non-equilibrium temperatures in the mixture of gases via maxwellian iteration (in preparation)

    Google ScholarĀ 

  35. I. Gyarmati, Non-equilibrium Thermodynamics. Field Theory and Variational Principles (Springer, Berlin, 1970)

    Google ScholarĀ 

  36. S.R. de Groot, W.A. van Leeuwen, Ch.G. van Weert, Relativistic Kinetic Theory (North-Holland, Amsterdam, 1980)

    Google ScholarĀ 

  37. S. Weinberg, Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J. 168, 175 (1971)

    ArticleĀ  Google ScholarĀ 

  38. V. Giovangigli, M. Massot, Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry. Math. Methods Appl. Sci. 27, 739 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  39. F. Conforto, R. Monaco, F. SchĆ¼rrer, I. Ziegler, Steady detonation waves via the Boltzmann equation for a reacting mixture. J. Phys. A 36, 5381 (2003)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  40. M. Groppi, G. Spiga, Kinetic theory of a chemically reacting gas with inelastic transitions. TTSP 30(4ā€“6), 305 (2001)

    Google ScholarĀ 

  41. F. Conforto, A. Jannelli, R. Monaco, T. Ruggeri, On the Riemann problem for a system of balance laws modelling a reactive gas mixture. Physica A 373, 67 (2007)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruggeri, T., Sugiyama, M. (2015). Multi-Temperature Mixture of Fluids. In: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham. https://doi.org/10.1007/978-3-319-13341-6_16

Download citation

Publish with us

Policies and ethics