Skip to main content

Non-linear ET6 and the Role of the Dynamic Pressure: Phenomenological Approach

  • Chapter
  • 662 Accesses

Abstract

In this chapter, we present ET of real gases with six independent fields, i.e., the mass density, the velocity, the temperature and the dynamic pressure, without adopting the near-equilibrium approximation. We prove its compatibility with the universal principles (the entropy principle, the Galilean invariance and the stability), and obtain the symmetric hyperbolic system with respect to the main field. The correspondence between the ET 6-field (ET6) theory and the Meixner theory of relaxation processes is discussed. The internal variable and the nonequilibrium temperature in the Meixner theory are expressed in terms of the quantities of the ET6 theory, in particular, the dynamic pressure. As an example, we present the case of rarefied polyatomic gases and study the monatomic-gas limit where the system converges to the Euler system of a perfect fluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Nonlinear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6 (2015)

    Article  Google Scholar 

  2. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys. Lett. A 376, 2799 (2012)

    Article  MathSciNet  Google Scholar 

  3. T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, On the six-field model of fluids based on extended thermodynamics. Meccanica 49, 2181 (2014)

    Article  MathSciNet  Google Scholar 

  4. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  5. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25, 727 (2013)

    Article  MathSciNet  Google Scholar 

  6. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys. Rev. E 89, 013025 (2014)

    Article  Google Scholar 

  7. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.K. Godunov, An interesting class of quasilinear systems. Sov. Math. 2, 947 (1961)

    MATH  Google Scholar 

  9. S.R. de Groot, P. Mazur, Non-equilibrium Thermodynamics (North-Holland, Amsterdam, 1963)

    Google Scholar 

  10. B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables. J. Chem. Phys. 47, 597 (1967)

    Article  Google Scholar 

  11. G.A. Maugin, W. Muschik, Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn. 19, 217 (1994)

    MATH  Google Scholar 

  12. G.A. Maugin, W. Muschik, Thermodynamics with internal variables. Part II. Applications. J. Non-Equilib. Thermodyn. 19, 250 (1994)

    Google Scholar 

  13. J. Meixner, Absorption und dispersion des schalles in gasen mit chemisch reagierenden und anregbaren komponenten. I. Teil. Ann. Phys. 43, 470 (1943)

    MathSciNet  Google Scholar 

  14. J. Meixner, Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter berucksichtigung der transporterscheinungen. Acoustica 2, 101 (1952)

    MathSciNet  Google Scholar 

  15. P. Ván, D. Berezovski, J. Engelbrecht, Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235 (2008)

    Article  MATH  Google Scholar 

  16. W.G. Vincenti, C.H. Kruger Jr., Introduction to Physical Gas Dynamics (Wiley, New York/London/Sydney, 1965)

    Google Scholar 

  17. M.A. Leontovich, Introduction to Thermodynamics. Statistical Physics (Nauka, Moscow, 1983)

    Google Scholar 

  18. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York/London, 1974)

    Google Scholar 

  19. N. Pottier, Nonequilibrium Statistical Physics (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  20. H. Grad, On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331 (1949)

    Google Scholar 

  21. J. Casas-Vázquez, D. Jou, Nonequilibrium temperature versus local-equilibrium temperature. Phys. Rev. E 49, 1040 (1994)

    Article  Google Scholar 

  22. J. Casas-Vázquez, D. Jou, Temperature in non-equilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66, 1937 (2003)

    Article  Google Scholar 

  23. E. Barbera, I. Müller, M. Sugiyama, On the temperature of a rarefied gas in non-equilibrium. Meccanica 34, 103 (1999)

    Article  MATH  Google Scholar 

  24. R.G. Gordon, W. Klemperer, J.I. Steinfeld, Vibrational and rotational relaxation. Ann. Rev. Phys. Chem. 19, 215 (1968)

    Article  Google Scholar 

  25. P. Secchi, Existence theorems for compressible viscous fluid having zero shear viscosity. Rend. Sem. Padova 70, 73 (1983)

    Google Scholar 

  26. V. Shelukhin, Vanishing shear viscosity in a free-boundary problem for the equations of compressible fluids. J. Differ. Equ. 167, 73 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Frid, V. Shelukhin, Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry. SIAM J. Math. Anal. 31, 1144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Ruggeri, D. Serre, Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math. 62, 163 (2004)

    MathSciNet  MATH  Google Scholar 

  29. T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws. The structure of the extended thermodynamics. Contin. Mech. Thermodyn. 1, 3 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. V.A. Cimmelli, D. Jou, T. Ruggeri, P. Ván, Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756 (2014)

    Article  MathSciNet  Google Scholar 

  31. T. Ruggeri, M. Sugiyama, Recent developments in extended thermodynamics of dense and rarefied polyatomic gases. Acta Appl. Math. 132, 527 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Arima, A. Mentrelli, T. Ruggeri, Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111 (2014)

    Article  MathSciNet  Google Scholar 

  33. E. Nagnibeda, E. Kustova, Non-equilibrium Reacting Gas Flow (Springer, Berlin/Heidelberg, 2009)

    Book  Google Scholar 

  34. S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)

    Article  Google Scholar 

  35. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Publications, New York, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruggeri, T., Sugiyama, M. (2015). Non-linear ET6 and the Role of the Dynamic Pressure: Phenomenological Approach. In: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer, Cham. https://doi.org/10.1007/978-3-319-13341-6_11

Download citation

Publish with us

Policies and ethics