Skip to main content

Topological Features for Monitoring Human Activities at Distance

  • Conference paper
  • First Online:
Activity Monitoring by Multiple Distributed Sensing (AMMDS 2014)

Abstract

In this paper, a topological approach for monitoring human activities is presented. This approach makes possible to protect the person’s privacy hiding details that are not essential for processing a security alarm. First, a stack of human silhouettes, extracted by background subtraction and thresholding, are glued through their gravity centers, forming a 3D digital binary image \(I\). Secondly, different orders of the simplices are applied on a simplicial complex obtained from \(I\), which capture relations among the parts of the human body when walking. Finally, a topological signature is extracted from the persistence diagrams according to each order. The measure cosine is used to give a similarity value between topological signatures. In this way, the powerful topological tool known as persistent homology is novelty adapted to deal with gender classification, person identification, carrying bag detection and simple action recognition. Four experiments show the strength of the topological feature used; three of they use the CASIA-B database, and the fourth use the KTH database to present the results in the case of simple actions recognition. In the first experiment the named topological signature is evaluated, obtaining \(98.8\,\%\) (lateral view) of correct classification rates for gender identification. In the second one are shown results for person identification, obtaining an average of \(98.5\,\%\). In the third one the result obtained is \(93.8\,\%\) for carrying bag detection. And in the last experiment the results were \(97.7\,\%\) walking and \(97.5\,\%\) running, which were the actions took from the KTH database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://comptop.stanford.edu/programs/plex-2.0.1-windows.zip

References

  1. Chen, C.H., Liang, J.M., Zhao, H., Hu, H.H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. PRL 30(11), 977–984 (2009)

    Article  Google Scholar 

  2. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of the 28th Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pp. 203–212 (2001)

    Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Topology invariant similarity of nonrigid shapes. Int. J. Comput. Vis. 81(3), 281–301 (2009)

    Article  Google Scholar 

  4. Zomorodian, A., Carlsson, G.: Localized homology. Comput. Geom. 41(3), 126–148 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zomorodian, A.: Computational topology. In: Atallah, M., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, vol. 2, 2nd edn. Chapman & Hall/CRC Press, Boca Raton (2010)

    Google Scholar 

  6. Zomorodian, A.: Topology for Computing. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  7. Ghrist, R.: Barcodes, the persistent topology of data. BAMS. Bull. Am. Math. Soc. 45, 61–75 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lamar-León, J., García-Reyes, E.B., González-Díaz, R.: Human gait identification using persistent homology. In: Álvarez, L., Mejail, M., Gómez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 244–251. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Lamar, J., Garcia, E., Gonzalez-Diaz, R., Alonso, R.: An application for gait recognition using persistent homology. Electron. J. Image-A 3(5) (2013)

    Google Scholar 

  10. Nixon, M.S., Carter, J.N.: Automatic recognition by gait. Proc. IEEE 94(11), 2013–2024 (2006)

    Article  Google Scholar 

  11. Murray, M.P.: Gait as a total pattern of movement: including a bibliography on gait. Am. J. Phys. Med. Rehabil. 46(1), 290–333 (1967)

    Google Scholar 

  12. Winter, D.A.: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. University of Waterloo Press, Waterloo (1991)

    Google Scholar 

  13. Golomb, B.A., Lawrence, D.T., Sejnowksi, T.J.: SEXNET: a neural network identifies sex from human faces. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems, vol. 3, pp. 572–579. Morgan Kaufmann Publishers Inc., San Mateo (1991)

    Google Scholar 

  14. Harb, H., Chen, L.: Gender identification using a general audio classifier. In: Proceedings of the 2003 International Conference on Multimedia and Expo, ICME ’03, vol. 1, pp. 733–736. IEEE (2003)

    Google Scholar 

  15. Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Trans. Image Process. 18(8), 1905–1910 (2009)

    Article  MathSciNet  Google Scholar 

  16. Hu, M., Wang, Y., Zhang, Z., Zhang, D.: Gait-based gender classification using mixed conditional random field. IEEE Trans. Syst. Man Cybern. Part B 41(5), 1429–1439 (2011)

    Article  Google Scholar 

  17. Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Chowdhury, A.K.R., Kruger, V., Chellappa, R.: Identification of humans using gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004)

    Article  Google Scholar 

  18. Goffredo, M., Carter, J.N., Nixon, M.S.: Front-view gait recognition. In: Biometrics: Theory, Applications, and Systems, pp. 1–6, 29 September–1 October (2008)

    Google Scholar 

  19. Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)

    Article  Google Scholar 

  20. Mather, G., Murdoch, L.: Gender discrimination in biological motion displays based on dynamic cues. Proc. Biol. Sci. 258(1353), 273–279 (1994)

    Article  Google Scholar 

  21. Dondera, R., Morariu, V.I., Davis, L.S.: Learning to detect carried objects with minimal supervision. In: CVPR Workshops, pp. 759–766. IEEE (2013)

    Google Scholar 

  22. Senst, T., Evangelio, R.H., Eiselein, V., Pätzold, M., Sikora, T.: Towards detecting people carrying objects - a periodicity dependency pattern approach. In: Richard, P., Braz, J. (eds.) VISAPP (2), pp. 524–529. INSTICC Press (2010)

    Google Scholar 

  23. BenAbdelkader, C., Davis, L.: Detection of people carrying objects: A motion-based recognition approach. In: Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 378–383. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Lamar Leon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Leon, J.L., Alonso, R., Reyes, E.G., Diaz, R.G. (2014). Topological Features for Monitoring Human Activities at Distance. In: Mazzeo, P., Spagnolo, P., Moeslund, T. (eds) Activity Monitoring by Multiple Distributed Sensing. AMMDS 2014. Lecture Notes in Computer Science(), vol 8703. Springer, Cham. https://doi.org/10.1007/978-3-319-13323-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13323-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13322-5

  • Online ISBN: 978-3-319-13323-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics