Skip to main content

On Various Levels of Linear Independence for Integer Translates of a Finite Number of Functions

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 3

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Systems of integer translates arise in the context of approximation theory, wavelet analysis, and in the theory of shift invariant spaces. After a review of the known properties for integer translates of one square summable function, we explore various levels of linear independence of integer translates of a finite number of functions in terms of properties of the associated Gramian matrix. In some cases, the results are not a straightforward generalization of the case when a single function is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Boor C, DeVore RA, RonA. The structure of finitely generated shift-invariant spaces in. J Funct Anal. 1994;119:37–78.

    Article  MATH  MathSciNet  Google Scholar 

  2. Christensen O. An introduction to frames and Riesz bases. Boston:Birkhauser; 2003.

    Book  MATH  Google Scholar 

  3. Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions. J Math Phys. 1986;27:1271–83.

    Article  MATH  MathSciNet  Google Scholar 

  4. Duffin RJ, Schaeffer AC. A class of nonharmonic Fourier series. Trans AMS. 1952;72:341–66.

    Article  MATH  MathSciNet  Google Scholar 

  5. Hernández E, Šikić H, Weiss G, Wilson E. On the properties of the integer translates of a square integrable function. Harmonic analysis and partial differential equations. Contemp Math. 2010;505:233–49.

    Google Scholar 

  6. Jia RQ, Micchelli CA. On linear independence for integer translates of a finite number of functions. Proc Edinb Math Soc. 1993;36:69–85.

    Article  MATH  MathSciNet  Google Scholar 

  7. Kislyakov SV. A sharp correction theorem. Studia Math. 1995;113:177–96.

    MATH  MathSciNet  Google Scholar 

  8. Menchoff D. Sur la convergence uniforme des séries de Fourier. Rec Math [Mat. Sbornik] N S. 1942;53:67–96.

    MathSciNet  Google Scholar 

  9. Nielsen M, Šikić H. Schauder bases of integer translates. Appl Comput Harmon Anal. 2007;23:259–62.

    Article  MATH  MathSciNet  Google Scholar 

  10. Paluszyński M. A note on integer translates of a square integrable function on. Colloq Math. 2010;118:593–7.

    Google Scholar 

  11. Reid WT. Some elementary properties of proper values and proper vectors of matrix functions. SIAM J Appl Math. 1970;18:259–66.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ron A. A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution. Constr Approx. 1989;5:297–308.

    Article  MATH  MathSciNet  Google Scholar 

  13. Ron A, Shen Z. Frames and stable bases for shift-invariant subspaces of. Can J Math. 1995;47:1051–94.

    Article  MATH  MathSciNet  Google Scholar 

  14. Saliani S. ℓ2-linear independence for the system of integer translates of a square integrable function. Proc Amer Math Soc. 2013;141:937–41.

    Article  MATH  MathSciNet  Google Scholar 

  15. Šikić H, Slamić I. Linear independence and sets of uniqueness. Glas Mat. 2012;47:415–20.

    Google Scholar 

  16. Šikić H, Speegle D. Dyadic PFW’s and W o -bases. In: Muić G, editor. Functional analysis IX. Aarhus University:Aarhus; 2007.

    Google Scholar 

  17. Singer I. Bases in Banach spaces I. Berlin:Springer; 1970.

    Book  MATH  Google Scholar 

  18. Vinogradov SA. A strengthened form of Kolmogorov’s theorem on the conjugate function and interpolation properties of uniformly convergent power series. In: Spectral theory of functions and operators II. A translation of Trudy Mat Inst Steklov. 1981;155:7–40. Proc. Steklov Inst. Math. no. 1, Providence:American Mathematical Society; 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Saliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saliani, S. (2015). On Various Levels of Linear Independence for Integer Translates of a Finite Number of Functions. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 3. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13230-3_9

Download citation

Publish with us

Policies and ethics