Skip to main content

The abc-Problem for Gabor Systems and Uniform Sampling in Shift-Invariant Spaces

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 3

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this chapter, we identify ideal window functions χ I on finite intervals I and time–frequency shift lattices \(a {\mathbb{Z}}\times b{\mathbb{Z}}\) such that the corresponding Gabor systems

$$\mathcal G(\chi_I, a {\mathbb{Z}}\times b{\mathbb{Z}}):=\{e^{-2\pi i n bt} \chi_I(t- m a):\ (m, n)\in{\mathbb{Z}}\times{\mathbb{Z}}\}$$

are frames for \(L^2({\mathbb{R}})\). Also we consider a stable recovery of rectangular signals f in a shift-invariant space

$$V_2(\chi_I, b{\mathbb{Z}}):=\Big\{\sum_{\lambda\in b{\mathbb{Z}}} d(\lambda) \chi_I(t-\lambda): \sum_{\lambda\in b{\mathbb{Z}}} |d(\lambda)|^2<\infty\Big\}$$

from their equally-spaced samples \(f(t_0+\mu), \mu\in a{\mathbb{Z}}\), for arbitrary initial sampling position t 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldroubi A, Gröchenig K. Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J Fourier Anal Appl. 2000;6:93–103.

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldroubi A, Gröchenig K. Nonuniform sampling and reconstruction in shift-invariant space. SIAM Rev. 2001;43:585–620.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi A, Sun Q, Tang W-S. Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J Fourier Anal Appl. 2005;22:215–44.

    Article  MathSciNet  Google Scholar 

  4. Baggett LW. Processing a radar signal and representations of the discrete Heisenberg group. Colloq Math. 1990;60/61:195–203.

    MathSciNet  Google Scholar 

  5. Borichev A, Gröchenig K, Lyubarskii T. Frame constants of Gabor frames near the critical density. J Math Pures Appl. 2010;94:170–82.

    Article  MATH  MathSciNet  Google Scholar 

  6. Casazza P. The art of frame theory. Taiwanese J Math. 2000;4:129–201.

    MATH  MathSciNet  Google Scholar 

  7. Casazza P, Kalton NJ. Roots of complex polynomials and Weyl–Heinsberg frame sets. Proc Am Math Soc. 2002;130:2313–8.

    Article  MATH  MathSciNet  Google Scholar 

  8. Christensen O. An introduction to Frames and Riesz Bases. Boston:Birkhäuser; 2002.

    Google Scholar 

  9. Dai X-R, Sun Q, The abc-problem for Gabor system, arXiv:1304.7750.

    Google Scholar 

  10. Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory. 1990;36:961–1005.

    Article  MATH  MathSciNet  Google Scholar 

  11. Daubechies I, Grossmann A. Frames in the Bargmann space of entire functions. Comm Pure Appl Math. 1988;41:151–64.

    Article  MATH  MathSciNet  Google Scholar 

  12. Daubechies I, Grossmann A, Meyer Y. Painless nonorthogonal expansions. J Math Phys. 1986;27:1271–83.

    Article  MATH  MathSciNet  Google Scholar 

  13. Duffin RJ, Schaeffer AC. A class of nonharmonic Fourier series. Trans Am Math Soc. 1952;72:341–66.

    Article  MATH  MathSciNet  Google Scholar 

  14. Feichtinger HG, Kaiblinger N. Varying the time-frequency lattice of Gabor frames. Trans Am Math Soc. 2004;356:2001–23.

    Article  MATH  MathSciNet  Google Scholar 

  15. Gabor D. Theory of communications. J Inst Electr Eng (London). 1946;93:429–57.

    Google Scholar 

  16. Gröchenig K. Foundations of time–frequency analysis. Boston:Birkhäuser; 2001.

    Book  MATH  Google Scholar 

  17. Gröchenig K, Leinert M. Wiener’s lemma for twisted convolution and Gabor frames. J Am Math Soc. 2003;17:1–18.

    Article  Google Scholar 

  18. Gröchenig K, Stöckler J. Gabor frames and totally positive functions. Duke Math J. 2013;162:1003–31.

    Article  MATH  MathSciNet  Google Scholar 

  19. Gu Q, Han D. When a characteristic function generates a Gabor frame. Appl Comput Harmonic Anal. 2008;24:290–309.

    Article  MATH  MathSciNet  Google Scholar 

  20. Han D, Wang Y. Lattice tiling and the Weyl–Heisenberg frames. Geom Funct Anal. 2001;11:742–58.

    Article  MATH  MathSciNet  Google Scholar 

  21. He X-G, Lau K-S. On the Weyl–Heisenberg frames generated by simple functions. J Funct Anal. 2011;261:1010–27.

    Article  MATH  MathSciNet  Google Scholar 

  22. Heil C. History and evolution of the density theorem for Gabor frames. J Fourier Anal Appl. 2007;13:113–166.

    Article  MATH  MathSciNet  Google Scholar 

  23. Hutchinson JE. Fractals and self similarity. Indiana Univ Math J. 1981;30(5):713–747.

    Article  MATH  MathSciNet  Google Scholar 

  24. Janssen AJEM. Signal analytic proofs of two basic results on lattice expansion. Appl Comp Harmonic Anal. 1994;1:350–354.

    Article  MATH  Google Scholar 

  25. Janssen AJEM. Representations of Gabor frame operators, In: Byrnes JS, editor. Twentieth Century Harmonic Analysis–A Celebration, NATO Sci. Ser. II, Math. Phys. Chem., Vol. 33. Dordrecht: Kluwer Academic; 2001, pp. 73–101AQ1.

    Google Scholar 

  26. Janssen AJEM, Zak transforms with few zeros and the tie In: Feichtinger HG, Strohmer T, editor. Advances in Gabor analysis. Boston: Birkhäuser; 2003, 31–70.

    Google Scholar 

  27. Janssen AJEM. On generating tight Gabor frames at critical density. J Fourier Anal Appl. 2003;9:175–214.

    Article  MATH  MathSciNet  Google Scholar 

  28. Janssen AJEM, Strohmer T. Hyperbolic secants yields Gabor frames. Appl Comput Harmonic Anal. 2002;12:259–67.

    Article  MATH  MathSciNet  Google Scholar 

  29. Landau H. On the density of phase space expansions. IEEE Trans Inform Theory. 1993;39:1152–6.

    Article  MATH  Google Scholar 

  30. Lyubarskii Yu. I. Frames in the Bargmann space of entire functions, In Entire and Subharmonic Functions, Amer. Math. Soc., Providences, RI; 1992, pp. 167–80.

    Google Scholar 

  31. Neumann J von. Mathematische Grundlagen der Quantenmechanik. Berlin:Springer; 1932.

    MATH  Google Scholar 

  32. Rieffel MA. Von Neumann algebras associated with pairs of lattices in Lie groups. Math Ann. 1980;257:403–18.

    Article  MathSciNet  Google Scholar 

  33. Ron A, Shen Z. Weyl-Heisenberg systems and Riesz bases in. \(L^2({\mathbb{R}}^d)\) Duke Math J. 1997;89:237–82.

    Article  MATH  MathSciNet  Google Scholar 

  34. Seip K. Density theorems for sampling and interpolation in the Bargmann-Fock space I. J Reine Angew Math. 1992;429:91–106.

    MATH  MathSciNet  Google Scholar 

  35. Seip K, Wallstén R. Density theorems for sampling and interpolation in the Bargmann-Fock space II. J Reine Angew Math. 1992;429:107–113.

    MATH  MathSciNet  Google Scholar 

  36. Sun Q. Local reconstruction for sampling in shift-invariant space. Adv Computat Math. 2010;32:335–352.

    Article  MATH  Google Scholar 

  37. Sun Q, Xian J. Rate of innovation for (non-)periodic signals and optimal lower stability bound for filtering. J Fourier Anal Appl. 2014;20:119–134.

    Google Scholar 

  38. Sun W, Zhou X. Characterization of local sampling sequences for spline subspaces. Adv Computat Math. 2009;30:153–75.

    Article  MATH  MathSciNet  Google Scholar 

  39. Unser M. Sampling—50 years after Shannon. Proc IEEE. 2000;88:569–87.

    Article  Google Scholar 

  40. Walters P. An introduction to Ergodic theory. Springer, 1982AQ2.

    Google Scholar 

  41. Walters P. An introduction to Ergodic theory. Graduate Texts in Mathematics, Vol. 79. New York: Springer; 1982.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Rong Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dai, XR., Sun, Q. (2015). The abc-Problem for Gabor Systems and Uniform Sampling in Shift-Invariant Spaces. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 3. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13230-3_8

Download citation

Publish with us

Policies and ethics