Skip to main content

Fallout Radionuclides

  • Chapter
  • First Online:
  • 1005 Accesses

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

A number of short-lived radioactive isotopes of both natural and anthropogenic origins which are (or were) atmospherically deposited over the landscape have been extensively utilized as sediment tracers in riverine environments. The three most extensively utilized isotopes, which are often referred to as fallout radionuclides (or FRNs), include in decreasing order of application, \({{}^{137}\mathrm{Cs}},\,{{}^{210}\mathrm{Pb}_\mathrm{ex}}\), and \({{}^7\mathrm{Be}}\). Herein we examine the primary ways in which these three isotopes have been applied to gain insights into the riverine sediment system. More specifically, we explore the strengths and weaknesses of using FRNs in combination with mixing models to determine sediment provenance at the catchment scale, particularly with regards to determining whether the sediment was derived by means of sheet, rill, gully, or bank erosion. The nuclide inventory approach is also examined for its ability to characterize other components of the sediment system at much smaller spatial scales, including the redistribution of sediment on hillslopes and between landscape units. Our discussion concludes by examining the ability of \({{}^7\mathrm{Be}}\) to document dynamic processes operating along the channel bed by determining sediment residence times, scour and fill depths, particle filtration, and sediment travel distances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Appleby P (2001) Chronostratigraphic techniques in recent sediments. In: Last W, Smol J (eds) Tracking environmental change using lake sediments, developments in paleoenvironmental research, vol 1. Springer, Netherlands, pp 171–203

    Chapter  Google Scholar 

  • Appleby P, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported \({{}^{210}{\rm {Pb}}}\) to the sediment. Catena 5:1–8

    Article  Google Scholar 

  • Appleby P, Oldfield F (1992) Applications of \({{}^{210}{\rm {Pb}}}\) to sedimentation studies. Oxford Science, Oxford, pp 731–778

    Google Scholar 

  • Appleby PG, Oldfield F, Thompson R, Huttenen P, Tolonen K (1979) \({{}^{210}{\rm {Pb}}}\) dating of annually laminated lake sediments from Finland. Nature 280:53–55

    Article  Google Scholar 

  • Basher L, Matthews K (1993) Relationship between \({{}^{137}{\rm {Cs}}}\) in some undisturbed New Zealand soils and rainfall. Soil Res 31:655–663

    Article  Google Scholar 

  • Baskaran M (2011) Environmental isotope geochemistry: past, present, and future. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, pp 3–10

    Google Scholar 

  • Baskaran M, Coleman C, Santschi P (1993) Atmospheric depositional fluxes of \({{}^7{\rm {Be}}}\) and \({{}^{210}{\rm {Pb}}}\) at Galveston and college station, Texas. J Geophys Res-Atmos 98:20555–20571

    Article  Google Scholar 

  • Belyaev V, Golosov V, Markelov M, Evrard O, Ivanova N, Paramonova T, Shamshurina E (2013) Using Chernobyl-derived \({{}^{137}{\rm {Cs}}}\) to document recent sediment deposition rates on the River Plava floodplain (Central European Russia). Hydrol Process 27:807–821

    Article  Google Scholar 

  • Bettoli M, Cantelli L, Degetto S, Tositti L, Tubertini O, Valcher S (1995) Preliminary investigations on \({{}^7{\rm {Be}}}\) as a tracer in the study of environmental processes. J Radioanal Nucl Chem 190:137–147

    Article  Google Scholar 

  • Blake WH, Walling DE, He Q (1999) Fallout \({{}^7{\rm {Be}}}\) as a tracer in soil erosion investigations. Appl Radiat Isot 51:599–605

    Article  Google Scholar 

  • Blake W, Wallbrink P, Wilkinson S, Humphreys G, Doerr S, Shakesby R, Tomkins K (2009) Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers. Geomorphology 104:105–116

    Article  Google Scholar 

  • Bonniwell E, Matisoff G, Whiting P (1999) Fine sediment residence times in rivers determined using fallout radionuclides (\({{}^7{\rm {Be}}},\,{{}^{137}{\rm {Cs}}}\), \({{}^{210}{\rm {Pb}}}\)). Geomorphology 27:75–92

    Article  Google Scholar 

  • Brigham M, McCullough C, Wilkinson P (2001) Analysis of suspended-sediment concentrations and radioisotope levels in the Wild Rice River basin, Northwestern Minnesota, 1973–98. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Bunzl K, Hotzl H, Rosner G, Winkler R (1995) Unexpectedly slow decrease of Chernobyl-derived radiocesium in air and deposition in Bavaria, Germany. Naturwissenschaften 82:417–420

    Article  Google Scholar 

  • Caitcheon G, Olley J, Pantus F, Hancock G, Leslie C (2012) The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) rivers. Geomorphology 151–152:188–195

    Google Scholar 

  • Ceaglio E, Meusburger K, Freppaz M, Zanini E, Alewell C (2012) Estimation of soil redistribution rates due to snow cover related processes in a mountainous area, Valle d’Aosta, NW Italy. Hydrol Earth Syst Sci 16:517–528

    Google Scholar 

  • Cushing C, Minshall G, Newbold J (1993) Transport dynamics of fine particulate organic matter in two Idaho streams. Limnol Oceanogr 38:1101–1101

    Article  Google Scholar 

  • Dickin A (1997) Radiogenic isotope geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Dietrich W, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Z Geomorphol 29:191–206

    Google Scholar 

  • Di Stefano C, Ferro V, Porto P (1999) Linking sediment yield and caesium-137 spatial distribution at basin scale. J Agric Eng Res 74:41–62

    Article  Google Scholar 

  • Dominik J, Burrus D, Vernet J (1987) Transport of the environmental radionuclides in an alpine watershed. Earth Planet Sci Lett 84:165–180

    Article  Google Scholar 

  • Dong W, Tims S, Fifield L, Guo Q (2010) Concentration and characterization of plutonium in soils of Hubei in central China. J Environ Radioact 101:29–32

    Article  Google Scholar 

  • Dörr H, Münnich K (1987) Spatial distribution of soil-\({{}^{137}{\rm {Cs}}}\) and \({{}^{134}{\rm {Cs}}}\) in West Germany after Chernobyl. Naturwissenschaften 74:249–251

    Article  Google Scholar 

  • Elliott G, Campbell B, Loughran R (1990) Correlation of erosion measurements and soil caesium-137 content. Intel J Appl Radiat Is 41:713–717

    Article  Google Scholar 

  • Everett S, Tims S, Hancock G, Bartley R, Fifield L (2008) Comparison of Pu and \({{}^{137}{\rm {Cs}}}\) as tracers of soil and sediment transport in a terrestrial environment. J Environ Radioact 99:383–393

    Article  Google Scholar 

  • Evrard O, Nemery J, Gratiot N, Duvert C, Ayrault S, Lefevre I et al. (2010) Sediment dynamics during the rainy season in tropical highland catchments of central Mexico using fallout radionuclides. Geomorphology 124:42–54

    Google Scholar 

  • Fisher G, Magilligan F, Kaste J, Nislow K (2010) Constraining the timescales of sediment sequestration associated with large woody debris using cosmogenic \({{}^7{\rm {Be}}}\). J Geophys Res-Earth Surface 115:F01013

    Article  Google Scholar 

  • Fitzgerald SA, Klump JV, Swarzenski PW, Mackenzie RA, Richards KD (2001) Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River, Wisconsin. Environ Sci Technol 35:300–305

    Article  Google Scholar 

  • Fornes W, Whiting P, Wilson C, Matisoff G (2005) Caesium-137-derived erosion rates in an agricultural setting: the effects of model assumptions and management practices. Earth Surf Proc Land 30:1181–1189

    Article  Google Scholar 

  • Foster IDL, Dalgeish H, Dearing JA, Jones ED (1994) Quantifying soil erosion and sediment transport in drainage basins: some observations on the use of \({{}^{137}{\rm {Cs}}}\), vol 224. IAHS Press, Wallingford

    Google Scholar 

  • Fredericks D, Perrens S (1988) Estimating erosion using caesium-137: II. Estimating rates of soil loss. Sediment budgets, vol 174. IAHS Publication, Wallingford, pp 233–240

    Google Scholar 

  • Gartner JD, Renshaw CE, Dade WB, Magilligan FJ (2012) Time and depth scales of fine sediment delivery into gravel stream beds: constraints from fallout radionuclides on fine sediment residence time and delivery. Geomorphology 151–152:39–49

    Article  Google Scholar 

  • Gaspar L, Navas A, Walling D, Machín J, Gómez Arozamena J (2013) Using \({{}^{137}{\rm {Cs}}}\) and \({{}^{210}{\rm {Pb}}_{\rm {ex}}}\) to assess soil redistribution on slopes at different temporal scales. Catena 102:46–54

    Article  Google Scholar 

  • Golosov V, Panin A, Markelov M (1999) Chernobyl \({{}^{137}{\rm {Cs}}}\) redistribution in the small basin of the Lokna river, Central Russia. Phys Chem Earth Part A 24:881–885

    Article  Google Scholar 

  • Golosov V, Belyaev V, Markelov M (2013) Application of Chernobyl-derived \({{}^{137}{\rm {Cs}}}\) fallout for sediment redistribution studies: lessons from European Russia. Hydrol Process 27:781–794

    Article  Google Scholar 

  • Gooseff M, Anderson J, Wondzell S, LaNier J, Haggerty R (2006) A modeling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrol Process 20:2443–2457

    Article  Google Scholar 

  • Haynes H, Vignaga E, Holmes W (2009) Using magnetic resonance imaging for experimental analysis of fine-sediment infiltration into gravel beds. Sedimentology 56:1961–1975

    Article  Google Scholar 

  • He Q, Walling D (1996) Use of fallout Pb-210 measurements to investigate longer-term rates and patterns of overbank sediment deposition on the floodplains of lowland rivers. Earth Surf Proc Land 21:141–154

    Article  Google Scholar 

  • Hoefs J (2010) Geochemical fingerprints: a critical appraisal. Eur J Miner 22:3–15

    Article  Google Scholar 

  • Hoo WT, Fifield LK, Tims SG, Fujioka T, Mueller N (2011) Using fallout plutonium as a probe for erosion assessment. J Environ Radioact 102:937–942

    Article  Google Scholar 

  • Huisman N, Karthikeyan K (2012) Using radiometric tools to track sediment and phosphorus movement in an agricultural watershed. J Hydrol 450–451:219–229

    Article  Google Scholar 

  • Kachanoski R (1987) Comparison of measured soil 137-cesium losses and erosion rates. Can J Soil Sci 67:199–203

    Article  Google Scholar 

  • Kasprak A, Magilligan F, Nislow K, Renshaw C, Snyder N, Dade W (2013) Differentiating the relative importance of land cover change and geomorphic processes on fine sediment sequestration in a logged watershed. Geomorphology 185:67–77

    Article  Google Scholar 

  • Kaste J, Fernandez I, Hess C, Norton S (1999) Delivery of cosmogenic beryllium-7 to forested watersheds in Maine, USA. Geol Soc Am Abstr Programs 31:305

    Google Scholar 

  • Kaste J, Norton S, Hess C (2002) Environmental chemistry of beryllium-7. Rev Miner Geochem 50:271–289

    Article  Google Scholar 

  • Kaste J, Elmore A, Vest K, Okin G (2011) Beryllium-7 in soils and vegetation along an arid precipitation gradient in Owens valley, California. Geophys Res Lett 38(L09):401

    Google Scholar 

  • Kelsey H, Madej M, Pitlick J, Stroud M, Coghlan P (1981) Major sediment sources and limits to the effectiveness of erosion control techniques in the highly erosive watersheds of North Coastal California. In: Proceedings of a symposium on erosion and sediment transport in Pacific Rim Steeplands, vol 132. IAHS Publication, pp 93–510

    Google Scholar 

  • Ketterer ME, Zhang J, Yamada M (2011) Application of transuranics as tracers and chronometers in the environment. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Advance in Isotope Geochemistry. Springer, Berlin, p 571

    Google Scholar 

  • Koch D, Jacob D, Graustein W (1996) Vertical transport of tropospheric aerosols as indicated by \({{}^7{\rm {Be}}}\) and \({{}^{210}{\rm {Pb}}}\) in a chemical tracer model. J Geophys Res-Atmos 101:18651–18666

    Article  Google Scholar 

  • Kwam Kim J, Onda Y, Yang D, Kim M (2013) Temporal variations of reservoir sediment sources in a small mountainous catchment in Korea. Earth Surf Proc Land 38:1380–1392

    Google Scholar 

  • Lance J, McIntyre S, Naney J, Rousseva S (1986) Measuring sediment movement at low erosion rates using cesium-137. Soil Sci Soc Am J 50:1303–1309

    Article  Google Scholar 

  • Le Cloarec M, Bonté P, Lefèvre I, Mouchel J, Colbert S (2007) Distribution of \({{}^7{\rm {Be}}},\,{{}^{210}{\rm {Pb}}}\) and \({{}^{137}{\rm {Cs}}}\) in watersheds of different scales in the Seine River basin: inventories and residence times. Sci Total Environ 375:125–139

    Article  Google Scholar 

  • Livens FR, Howe MT, Hemingway JD, Goulding KWT, Howard BJ (1996) Forms and rates of release of \({}^{137}\)Cs in two peat soils. European J of Soil Sci 47:105–112

    Google Scholar 

  • Lomenick T, Tamura T (1965) Naturally occurring fixation of cesium-137 on sediments of Lacustrine origin. Soil Sci Soc Am J 29:383–387

    Article  Google Scholar 

  • Longmore M (1982) The caesium-137 dating technique and associated applications in Australia—a review. In: Archaeometry: an australasion perspective, pp 310–321

    Google Scholar 

  • Mabit L, Bernard C, Laverdiére M (2002) Quantification of soil redistribution and sediment budget in a Canadian watershed from fallout caesium-137 (\({{}^{137}{\rm {Cs}}}\)) data. Can J Soil Sci 82:423–431

    Article  Google Scholar 

  • Mabit L, Benmansour M, Walling D (2008) Comparative advantages and limitations of the fallout radionuclides \({{}^{137}{\rm {Cs}}},\,{{}^{210}{\rm {Pb}}_{\rm {ex}}}\) and \({{}^7{\rm {Be}}}\) for assessing soil erosion and sedimentation. J Environ Radioact 99:1799–1807

    Article  Google Scholar 

  • Mabit L, Meusburger K, Fulajtar E, Alewell C (2013) The usefulness of \({{}^{137}{\rm {Cs}}}\) as a tracer for soil erosion assessment: a critical reply to Parsons and Foster (2011). Earth Sci Rev 127:300–307

    Article  Google Scholar 

  • Matisoff G, Whiting P (2011) Measuring soil erosion rates using natural (\({{}^7{\rm {Be}}},\,{{}^{210}{\rm {Pb}}}\)) and anthropogenic (\({{}^{137}{\rm {Cs}}}\), \({{}^{239,240}{\rm {Pu}}}\)) radionuclides. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, pp 487–519

    Google Scholar 

  • Matisoff G, Wilson C, Whiting P (2005) The \({{}^7{\rm {Be}}}/{{}^{210}{\rm {Pb}}-{xs}}\) ratio as an indicator of suspended sediment age or fraction new sediment in suspension. Earth Surf Proc Land 30:1191–1201

    Article  Google Scholar 

  • Menzel R (1960) Transport of strontium-90 in runoff. Science 131:499–500

    Article  Google Scholar 

  • Nagle G, Fahey T, Ritchie J, Woodbury P (2007) Variations in sediment sources and yields in the Finger Lakes and Catskills regions of New York. Hydrol Process 21:828–838

    Article  Google Scholar 

  • Nouira A, Sayouty E, Benmansour M (2003) Use of \({{}^{137}{\rm {Cs}}}\) technique for soil erosion study in the agricultural region of Casablanca in Morocco. J Environ Radioact 68:11–26

    Article  Google Scholar 

  • Olley J, Burton J, Smolders K, Pantus F, Pietsch T (2013) The application of fallout radionuclides to determine the dominant erosion process in water supply catchments of subtropical South-East Queensland, Australia. Hydrol Process 27:885–895

    Article  Google Scholar 

  • Parsons A, Foster I (2011) What can we learn about soil erosion from the use of \({{}^{137}{\rm {Cs}}}\)? Earth Sci Rev 108:101–113

    Article  Google Scholar 

  • Perkins R, Thomas C (1980) Worldwide fallout. In: Hanson WC (ed) Transuranic elements in the environment USDOE/TIC-22800. US Department of Energy, Washington, pp 53–82

    Google Scholar 

  • Porcillie D, Baskaran M (2011) An overview of isotope geochemistry in environmental studies. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Advances in Isotope Geochemistry. Springer, Berlin

    Google Scholar 

  • Porto P, Walling DE (2012) Validating the use of \({{}^{137}{\rm {Cs}}}\) and \({{}^{210}{\rm {Pb}}_{\rm {ex}}}\) measurements to estimate rates of soil loss from cultivated land in Southern Italy. J. Environ Radioact 106:47–57

    Article  Google Scholar 

  • Porto P, Walling D, Ferro V (2001) Validating the use of caesium-137 measurements to estimate soil erosion rates in a small drainage basin in Calabria, Southern Italy. J Hydrol 248:93–108

    Article  Google Scholar 

  • Porto P, Walling D, Ferro V, di Stefano C (2003a) Validating erosion rate estimates provided by caesium-137 measurements for two small forested catchments in Calabria, Southern Italy. Land Degrad Dev 14:389–408

    Article  Google Scholar 

  • Porto P, Walling D, Tamburino V, Callegari G (2003b) Relating caesium-137 and soil loss from cultivated land. Catena 53:303–326

    Article  Google Scholar 

  • Preiss N, Mélières M, Pourchet M (1996) A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. J Geophys Res Atmos 101:28847–28862

    Article  Google Scholar 

  • Reid L, Dunne T, Cederholm C (1981) Application of sediment budget studies to the evaluation of logging road impact. J Hydrol 20:49–62

    Google Scholar 

  • Ritchie J, McHenry J (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J. Environ Qual 19:215–233

    Article  Google Scholar 

  • Ritchie J, Ritchie C (2008) Bibliography of publications of \({{}^{137}{\rm {Cs}}}\) studies related to erosion and sediment deposition. http://www.ars.usda.gov/Main/docs.htm?docid=15237

  • Ritchie J, Spraberry J, McHenry J (1974) Estimating soil erosion from the redistribution of fallout \({{}^{137}{\rm {Cs}}}\). Soil Sci Soc Am J 38:137–139

    Article  Google Scholar 

  • Robbins J (1978) Geochemical and geophysical applications of radioactive lead. The Biogeochemistry of lead in the environment. Elsevier, Amsterdam, pp 285–337

    Google Scholar 

  • Rogowski A, Tamura T (1965) Environmental mobility of cesium-137. Radiat Bot 10:35–45

    Article  Google Scholar 

  • Saç MM, Uǧur A, Yener G, Özden B (2008) Estimates of soil erosion using cesium-137 tracer models. Environ Monit Assess 136:461–467

    Article  Google Scholar 

  • Salant N, Renshaw C, Magilligan F, Kaste J, Nislow K, Heimsath A (2007) The use of short-lived radionuclides to quantify transitional bed material transport in a regulated river. Earth Surf Proc Land 32:509–524

    Article  Google Scholar 

  • Schuller P, Iroumé A, Walling D, Mancilla H, Castillo A, Trumper R (2006) Use of beryllium-7 to document soil redistribution following forest harvest operations. J Environ Qual 35:1756–1763

    Article  Google Scholar 

  • Smith H, Blake W, Owens P (2012) Application of sediment tracers to discriminate sediment sources following wildfire. IAHS-AISH Publication, Wallingford, pp 81–89

    Google Scholar 

  • Soto J, Navas A (2008) A simple model of Cs-137 profile to estimate soil redistribution in cultivated stony soils. Radiat Meas 43:1285–1293

    Article  Google Scholar 

  • Staunton S (1994) Adsorption of radiocaesium on various soils: interpretation and consequences of the effects of soil: solution ratio and solution composition on the distribution coefficient. Eur J Soil Sci 45:409–418

    Article  Google Scholar 

  • Stokes S, Walling D (2003) Radiogenic and isotopic methods for the direct dating of fluvial sediments. Wiley, New York, pp 231–267

    Google Scholar 

  • Sutherland R (1994) Spatial variability of \({{}^{137}{\rm {Cs}}}\) and the influence of sampling on estimates of sediment redistribution. Catena 21:57–71

    Article  Google Scholar 

  • Syversen N, Øygarden L, Salbu B (2001) Cesium-134 as a tracer to study particle transport processes within a small catchment with a buffer zone. J Environ Qual 30:1771–1783

    Article  Google Scholar 

  • Taylor A, Blake W, Couldrick L, Keith-Roach M (2012) Sorption behaviour of beryllium-7 and implications for its use as a sediment tracer. Geoderma 187-188:16–23

    Google Scholar 

  • Trimble S (1983) A sediment budget for Coon Creek basin in the Driftless Area, Wisconsin, 1853–1977. Am J Sci 283:454–474

    Article  Google Scholar 

  • Wallbrink P, Croke J (2002) A combined rainfall simulator and tracer approach to assess the role of best management practices in minimising sediment redistribution and loss in forests after harvesting. For Ecol Manag 170:217–232

    Article  Google Scholar 

  • Wallbrink P, Murray A (1993) Use of fallout radionuclides as indicators of erosion processes. Hydrol Process 7:297–304

    Article  Google Scholar 

  • Wallbrink P, Murray A (1994) Fallout of \({{}^7{\rm {Be}}}\) in south eastern Australia. J Environ Radioact 25:213–228

    Article  Google Scholar 

  • Wallbrink P, Murray A (1996) Distribution and variability of \({{}^7{\rm {Be}}}\) in soils under different surface cover conditions and its potential for describing soil redistribution processes. Water Resour Res 32:467–476

    Article  Google Scholar 

  • Wallbrink PJ, Olley JM, Murray AS (1994) Measuring soil movement using \({{}^{137}{\rm {Cs}}}\): implications of reference site variability. Intl Assoc Hydrol Sci Publ 224:95–105

    Google Scholar 

  • Wallbrink P, Murray A, Olley J, Olive L (1998) Determining sources and transit times of suspended sediment in the Murrumbidgee river, New South Wales, Australia, using fallout \({{}^{137}{\rm {Cs}}}\) and \({{}^{210}{\rm {Pb}}}\). Water Resour Res 34:879–887

    Article  Google Scholar 

  • Wallbrink P, Roddy B, Olley J (2002) A tracer budget quantifying soil redistribution on hillslopes after forest harvesting. Catena 47:179–201

    Article  Google Scholar 

  • Walling D (2013) Beryllium-7: the cinderella of fallout radionuclide sediment tracers? Hydrol Process 27:830–844

    Article  Google Scholar 

  • Walling D, He Q (1999) Using fallout lead-210 measurements to estimate soil erosion in cultivated land. Soil Sci Soc Am J 63:1404–1412

    Article  Google Scholar 

  • Walling D, Quine T (1992) The use of caesium-137 measurements in soil erosion surveys. In: Bogen J, Walling DE, Day TJ (eds) Erosion and sediment transport monitoring programmes in river basins. In: Proceedings of the international symposium on international association of hydrological sciences, vol 210, pp 143–152

    Google Scholar 

  • Walling DE, Woodward JC (1995) Tracing sources of suspended sediment in river basins: a case study of the River Clum, Devon, UK. Mar Freshw Res 46:327–336

    Google Scholar 

  • Walling D, Owens P, Leeks G (1999) Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol Process 13:955–975

    Article  Google Scholar 

  • Walling D, He Q, Appleby P (2002) Conversion models for use in soil-erosion, soil-redistribution, and sedimentation investigations. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Walling D, Schuller P, Zhang Y, Iroumé A (2009) Extending the timescale for using beryllium-7 measurements to document soil redistribution by erosion. Water Resour Res 45:W02418

    Google Scholar 

  • Walling D, Zhang Y, He Q (2011) Models for deriving estimates of erosion and deposition rates from fallout radionuclide (caesium-137, excess lead-210, and beryllium-7) measurements and the development of user friendly software for model implementation. In: Impact of soil conservation measures on erosion control and soil quality IAEA-TECDOC-1665, pp 11–33

    Google Scholar 

  • Wendling L, Harsh J, Ward T, Palmer C, Hamilton M, Boyle J, Flury M (2005) Cesium desorption from illite as affected by exudates from Rhizosphere bacteria. Environ Sci Technol 39:4505–4512

    Article  Google Scholar 

  • Wilkinson S, Prosser I, Rustomji P, Read A (2009) Modelling and testing spatially distributed sediment budgets to relate erosion processes to sediment yields. Environ Model Softw 24:489–501

    Article  Google Scholar 

  • Wilson C, Matisoff G, Whiting P (2003) Short-term erosion rates from a \({{}^7{\rm {Be}}}\) inventory balance. Earth Surf Proc Land 28:967–977

    Article  Google Scholar 

  • Wise S (1980) Caesium-137 and lead-210: a review of the techniques and some applications in geomorphology. In: Cullingford RA, Davidson DA, Lewin J (eds) Timescales in geomorphology. Wiley, London, pp 109–127

    Google Scholar 

  • Wooldridge D (1965) Tracing soil particle movement with Fe-59. Soil Sci Soc Am J 29:469–472

    Article  Google Scholar 

  • Zhang X, Zhang Y (1995) Use of caesium-137 to investigate sediment sources in the Hekouzhen-Longmen basin of the middle Yellow River, China. In: Foster IDL (ed) Sediment and water quality in river catchments. Wiley, London, pp 353–362

    Google Scholar 

  • Zhang X, Higgitt D, Walling D (1990) A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrol Sci J 35:243–252

    Article  Google Scholar 

  • Zhang X, Walling D, Quine T, Wen A (1997) Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling loess plateau region of China. Land Degrad Dev 8:1–16

    Google Scholar 

  • Zhang X, Qi Y, Walling D, He X, Wen A, Fu J (2006) A preliminary assessment of the potential for using \({{}^{210}{\rm {Pb}}_{\rm {ex}}}\) measurement to estimate soil redistribution rates on cultivated slopes in the Sichuan Hilly basin of China. Catena 68:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry R. Miller .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Miller, J.R., Mackin, G., Orbock Miller, S.M. (2015). Fallout Radionuclides. In: Application of Geochemical Tracers to Fluvial Sediment. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13221-1_3

Download citation

Publish with us

Policies and ethics