Skip to main content

Introduction

  • Chapter
  • First Online:
Advances in Knowledge Discovery in Databases

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 79))

  • 1281 Accesses

Abstract

Knowledge discovery in databases remains an active area of research since its inception in the late 1980s. Numerous applications of knowledge discovery in databases are reported in various domains. One of the popular domains is market basket data and the early research results are based on it. On the other hand, the time-stamped data are being generated continuously as time component is related to virtually all data. As a result, it remains an active area of research over time. But, research reports on mining multiple related databases started coming in early 2000s. The domain of multiple related databases is expanding since many applications generate multiple databases. This book presents some advances in the above three areas. This chapter ends with a note of future trends of data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari A, Rao PR (2008) Synthesizing heavy association rules from different real data sources. Pattern Recogn Lett 29(1):59–71

    Article  Google Scholar 

  • Adhikari J, Rao PR (2010) Measuring influence of an item in a database over time. Pattern Recogn Lett 31(1):179–187

    Article  Google Scholar 

  • Adhikari A, Ramachandrarao P, Pedrycz W (2010a) Developing multi-database mining applications. Springer, Berlin

    Book  MATH  Google Scholar 

  • Adhikari A, Ramachandrarao P, Prasad B, Jhimli Adhikari J (2010b) Mining multiple large data sources. Int Arab J Inf Technol 7(3):241–249

    Google Scholar 

  • Adhikari A, Adhikari J, Pedrycz W (2014) Data analysis and pattern recognition in multiple databases. Springer, Berlin

    Book  MATH  Google Scholar 

  • Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of international conference on very large data bases, pp 487–499

    Google Scholar 

  • Agrawal R, Srikant R (1995) Mining sequential patterns. In: Proceedings of the 11th international conference on data engineering, pp 3–14

    Google Scholar 

  • Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD conference management of data, pp 207–216

    Google Scholar 

  • Bettini C, Jajodia S, Wang XS (2000) Time granularities in databases, data mining, and temporal reasoning. Springer, Berlin

    Google Scholar 

  • Big data analytics at Thomson Reuters. Interview with Jochen L. Leidner (2013) http://www.odbms.org/blog/2013/11/big-data-analytics-at-thomson-reuters-interview-with-jochen-l-leidner/

  • Bishop CM (2013) Pattern recognition and machine learning. Springer, Berlin

    Google Scholar 

  • Coenen F (2011) Data mining: past, present and future. Knowl Eng Rev 26(1):25–29

    Article  MathSciNet  Google Scholar 

  • Coenen F, Goulbourne G, Leng PH (2004) Tree structures for mining association rules. Data Min Knowl Disc 8(1):25–51

    Article  MathSciNet  Google Scholar 

  • Fan W, Bifet A (2012) Mining big data: current status, and forecast to the future. SIGKDD Explor 14(2):1–5

    Article  Google Scholar 

  • Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy (eds) (1996) Advances in knowledge discovery and data mining. AAAI/MIT Press, Cambridge

    Google Scholar 

  • Garofalakis MN, Rastogi R, Shim K (1999) SPIRIT: sequential pattern mining with regular expression constraints. In: Proceedings of VLDB, pp 223–234

    Google Scholar 

  • Han J, Pei J, Yiwen Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD conference on management of data, pp 1–12

    Google Scholar 

  • Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, Los Altos

    Google Scholar 

  • Hershberger SL, Fisher DG (2005) Measures of association, encyclopedia of statistics in behavioral science. Wiley, New York

    Google Scholar 

  • Hsu W, Lee ML, Wang J (2008) Temporal and spatio-temporal data mining. IGI Publishing, Hershey

    Google Scholar 

  • Hu J, Zhong N (2006) Organizing multiple data sources for developing intelligent e-business portals. Data Min Knowl Disc 12(2–3):127–150

    Article  MathSciNet  Google Scholar 

  • Kargupta H, Huang W, Krishnamurthy S, Park B, Wang S (2000) Collective PCA from distributed and heterogeneous data. In: Proceedings of the fourth European conference on principles and practice of knowledge discovery in databases, pp 452–457

    Google Scholar 

  • Kum H-C, Chang HC, Wang W (2006) Sequential pattern mining in multi-databases via multiple alignment. Data Min Knowl Disc 12(2–3):151–180

    Article  MathSciNet  Google Scholar 

  • Leonard M, Wolfe B (2005) Mining transactional and time series data. In: Proceedings of SUGI 30, paper 080-30

    Google Scholar 

  • Maimon O, Rokach L (2010) Data mining and knowledge discovery handbook. Springer, Berlin

    Google Scholar 

  • Manilla H, Toivonen H, Verkamo L (1997) Discovery of frequent episodes in event sequences. Data Min Knowl Disc 1(3):259–289

    Article  Google Scholar 

  • Matsubara Y, Sakurai Y, Faloutsos C, Iwata T, Yoshikawa M (2012) Fast mining and forecasting of complex time-stamped events. In: Proceedings of KDD, pp 271–279

    Google Scholar 

  • Mitsa T (2010) Temporal data mining. CRC Press, Boca Raton

    Google Scholar 

  • Page D, Craven M (2003) Biological applications of multi-relational data mining. SIGKDD Explor 5(1):69–79

    Article  Google Scholar 

  • Piatetsky-Shapiro G, Frawley WJ (eds) (1991) Knowledge discovery in databases. AAAI/MIT Press, Cambridge

    Google Scholar 

  • Savasere A, Omiecinski E, Navathe S (1995) An efficient algorithm for mining association rules in large databases. In: Proceedings of the 21st international conference on very large data bases, pp 432–443

    Google Scholar 

  • Smyth P, Goodman M (1992) An information theoretic approach to rules induction from databases. IEEE Trans Knowl Data Eng 4(4):301–316

    Article  Google Scholar 

  • Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improvements. In: Proceedings of EDBT, pp 3–17

    Google Scholar 

  • Tan P-N, Kumar V, Srivastava J (2003) Selecting the right interestingness measure for association patterns. In: Proceedings of SIGKDD conference, pp 32–41

    Google Scholar 

  • Tanbeer SK, Ahmed CF, Jeong BS, Lee YK (2009) Discovering periodic-frequent patterns in transactional databases. Pacific Asia knowledge discovery in databases, pp 242–253

    Google Scholar 

  • Theodoridis S (2011) Pattern recognition. Elsevier, Amsterdam

    Google Scholar 

  • Toivonen H (1996) Sampling large databases for association rules. In: Proceedings of the 22-th international conference on very large data bases, pp 134–145

    Google Scholar 

  • Wang J, Han J (2004) BIDE: efficient mining of frequent closed sequences. In: Proceedings of the 20th international conference on data engineering, pp 79–90

    Google Scholar 

  • Wang JT, Zaki MJ, Toivonen HT, Shasha DE (2005) Data mining in bioinformatics. Springer, Berlin

    Google Scholar 

  • Wu X, Zhang S (2003) Synthesizing high-frequency rules from different data sources. IEEE Trans Knowl Data Eng 14(2):353–367

    Google Scholar 

  • Wu X, Zhang C, Zhang S (2004) Efficient mining of both positive and negative association rules. ACM Trans Inf Syst 22(3):381–405

    Google Scholar 

  • Wu X, Zhang C, Zhang S (2005) Database classification for multi-database mining. Inf Syst 30(1):71–88

    Article  MATH  Google Scholar 

  • Yan J, Liu N, Yang Q, Zhang B, Cheng Q, Chen Z (2006) Mining adaptive ratio rules from distributed data sources. Data Min Knowl Disc 12(2–3):249–273

    Article  MathSciNet  Google Scholar 

  • Ye N (2003) The handbook of data mining. CRC Press, Boca Raton

    Google Scholar 

  • Zaki MJ (2000) Sequence mining in categorical domains: incorporating constraints. In: Proceedings of CIKM, pp 422–429

    Google Scholar 

  • Zaki MJ (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn J 42(1/2):31–60

    Article  MATH  Google Scholar 

  • Zhang S, Wu X (2011) Fundamentals of association rules in data mining and knowledge discovery. Wiley Interdisc Rew Data Min Knowl Disc 1(2):97–116

    Article  MATH  Google Scholar 

  • Zhang S, Wu X, Zhang C (2003) Multi-database mining. IEEE Comput Intell Bull 2(1):5–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Adhikari .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adhikari, A., Adhikari, J. (2015). Introduction. In: Advances in Knowledge Discovery in Databases. Intelligent Systems Reference Library, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-13212-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13212-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13211-2

  • Online ISBN: 978-3-319-13212-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics