Skip to main content

Far-Field Ocean Conditions and Concentrate Discharges Modeling Along the Saudi Coast of the Red Sea

  • Conference paper
  • First Online:
Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities

Abstract

An integrated modeling system is developed to simulate the far-field dispersions of concentrate discharges along the Saudi coast of the Red Sea. It comprises the Weather Research and Forecast (WRF) model for simulating the atmospheric circulations, the MIT general circulation model (MITgcm) for simulating the large-scale ocean conditions, and the Connectivity Modeling System (CMS) for tracking particle pathways. We use the system outputs and remote sensing altimetry data to study and analyze the atmospheric and oceanic conditions along the Saudi coast of the Red Sea and to conduct particle tracking experiments. The model simulations show distinctive patterns of seasonal variations in both the atmospheric conditions and the large-scale ocean circulation in the Red Sea, which are also reflected in the salinity and temperature distributions along the Saudi coast. The impact of this seasonality on the far-field dispersion of concentrate discharges are illustrated in seasonal dispersion scenarios with discharging outfalls located at the northern, central and southern Saudi coasts of the Red Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berumen, M. L., et al. (2013). The status of coral reef ecology research in the Red Sea. Coral Reefs, 32(3), 737–748. doi:10.1007/S00338-013-1055-8.

    Article  Google Scholar 

  • Dibarboure, G., Lauret, O., Mertz, F., Rosmorduc, V., & Maheu, C. (2008). SSALTO/DUACS user handbook:(M) SLA and (M) ADT near-real time and delayed time products. Rep. CLS-DOS-NT, 6, 39.

    Google Scholar 

  • Emery, W. J., & Thomson, R. E. (2001). Data analysis methods in physical oceanography (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Haza, A. C., Piterbarg, L. I., Martin, P., Ozgokmen, T. M., & Griffa, A. (2007). A Lagrangian subgridscale model for particle transport improvement and application in the Adriatic Sea using the Navy Coastal Ocean Model. Ocean Modelling, 17(1), 68–91. doi:10.1016/J.Ocemod.2006.10.004.

    Article  Google Scholar 

  • Hegarty, J., Draxler, R. R., Stein, A. F., Brioude, J., Mountain, M., Eluszkiewicz, J., et al. (2013). Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases. Journal of Applied Meteorology and Climatology, 52(12), 2623–2637. doi:10.1175/Jamc-D-13-0125.1.

    Article  Google Scholar 

  • Ioc, I. (2003). BODC, 2003. Centenary edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the general bathymetric chart of the oceans. Liverpool, United Kingdom: British Oceanographic Data Centre.

    Google Scholar 

  • Jiang, H., Farrar, J. T., Beardsley, R. C., Chen, R., & Chen, C. (2009). Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophysical Research Letters, 36(19), L19605. doi:10.1029/2009GL040008.

    Article  Google Scholar 

  • Langodan, S., Cavaleri, L., Viswanadhapalli, Y., & Hoteit, I. (2014). The Red Sea: A natural laboratory for wind and wave modeling. Journal of Physical Oceanography. Accepted with ref no: JPO-D-13-0242.

    Google Scholar 

  • Lo, J. C. F., Yang, Z. L., & Pielke, R. A. (2008). Assessment of three dynamical climate downscaling methods using the weather research and forecasting (WRF) model. Journal of Geophysical Research: Atmospheres, 113(D9).

    Google Scholar 

  • Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997a). A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans, 102(C3), 5753–5766. doi:10.1029/96jc02775.

    Article  Google Scholar 

  • Marshall, J., Hill, C., Perelman, L., & Adcroft, A. (1997b). Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102(C3), 5733–5752. doi:10.1029/96jc02776.

    Article  Google Scholar 

  • Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., et al. (2005). The weather research and forecast model: Software architecture and performance. Use of High Performance Computing in Meteorology. 156–168, doi:10.1142/9789812701831_0012.

  • Paris, C. B., Helgers, J., Van Sebille, E., & Srinivasan, A. (2013). Connectivity modeling system: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environmental Modelling and Software, 42, 47–54.

    Article  Google Scholar 

  • Piterbarg, L. I. (2001). Short-term prediction of Lagrangian trajectories. Journal of Atmospheric and Oceanic Technology, 18(8), 1398–1410. doi:10.1175/1520-0426(2001)018<1398:Stpolt>2.0.Co;2.

    Article  Google Scholar 

  • Ralston, D. K., Jiang, H. S., & Farrar, J. T. (2013). Waves in the Red Sea: Response to monsoonal and mountain gap winds. Continental Shelf Research, 65, 1–13. doi:10.1016/J.Csr.2013.05.017.

    Article  Google Scholar 

  • Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Dudha, M., et al. (2008). A description of the advanced research WRF ver 30. Technical Note. NCAR/TN-475+STR. 113.

    Google Scholar 

  • Sofianos, S. S., & Johns, W. E. (2001). Wind induced sea level variability in the Red Sea. Geophysical Reseach Letters, 28(16), 3175–3178. doi:10.1029/2000gl012442.

    Article  Google Scholar 

  • Sofianos, S. S., & Johns, W. E. (2002). An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean. Journal of Geophysical Research: Oceans, 107(C11), doi:Artn 3196, doi:10.1029/2001jc001184.

  • Sofianos, S. S., Johns, W. E., & Murray, S. P. (2002). Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb. Deep-Sea Research Part II, 49(7–8), 1323–1340. doi:10.1016/S0967-0645(01)00164-3. (Pii S0967-0645(01)00164-3).

    Article  Google Scholar 

  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474.

    Article  Google Scholar 

  • Veneziani, M., Griffa, A., Garraffo, Z. D., & Chassignet, E. P. (2005). Lagrangian spin parameter and coherent structures from trajectories released in a high-resolution ocean model. Journal of Marine Research, 63(4), 753–788. doi:10.1357/0022240054663187.

    Article  Google Scholar 

  • Veneziani, M., Griffa, A., Reynolds, A. M., & Mariano, A. J. (2004). Oceanic turbulence and stochastic models from subsurface Lagrangian data for the northwest Atlantic Ocean. Journal of Physical Oceanography, 34(8), 1884–1906. doi:10.1175/1520-0485(2004)034<1884:Otasmf>2.0.Co;2.

    Article  Google Scholar 

  • Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Köhl, A., Gopalakrishnan, G., & Rivas, D. (2014a). Seasonal overturning circulation in the Red Sea: 2. Winter circulation. Journal of Geophysical Research: Oceans, 119(4), 2263–2289. doi:10.1002/2013JC009331.

    Google Scholar 

  • Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Zhai, P., Köhl, A., & Gopalakrishnan, G. (2014b). Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. Journal of Geophysical Research: Oceans, 119(4), 2238–2262. doi:10.1002/2013JC009004.

    Google Scholar 

  • Zhai, P., & Bower, A. (2013). The response of the Red Sea to a strong wind jet near the Tokar Gap in summer. Journal of Geophysical Research: Oceans, 118(1), 422–434. doi:10.1029/2012jc008444.

    Google Scholar 

  • Zhan, P., Subramanian, A. C., Yao, F., & Hoteit, I. (2014). Eddies in the Red Sea: A statistical and dynamical study. Journal of Geophysical Research: Oceans, 119(6), 3909–3925, doi:10.1002/2013JC009563.

Download references

Acknowledgments

The research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhan, P., Yao, F., Kartadikaria, A.R., Viswanadhapalli, Y., Gopalakrishnan, G., Hoteit, I. (2015). Far-Field Ocean Conditions and Concentrate Discharges Modeling Along the Saudi Coast of the Red Sea. In: Missimer, T., Jones, B., Maliva, R. (eds) Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-13203-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13203-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13202-0

  • Online ISBN: 978-3-319-13203-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics