Skip to main content

Tiered Modeling Approach for Desalination Effluent Discharges

  • Conference paper
  • First Online:
Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

The mixing behavior of desalination plant effluents in the receiving waters is significantly influenced by the effluent density, which is dominated by the varying effluent salinity and temperature. The dense RO (reverse osmosis) effluent flow has the tendency to fall as a negatively buoyant plume. The MSF (multi-stage-flash) effluent is distinguished by a neutral to positive buoyancy flux that causes the plume to rise. This chapter describes the principle steps to model effluent dispersion in the receiving environment and to improve discharge design and siting. The different modeling tools are described and applied for typical case studies. A modelling framework for the environmental-hydraulic design of the outfall system for desalination plants has been developed and combined with a tiered approach to facilitate discharge assessments. Furthermore, environmental regulations and opportunities for site-specific, ecologically relevant criteria are discussed. The tiers include initial screening methods, using rapid assessment tools to determine the significance of the discharge. Length-scale based flow classification, nomograms, and empirical dilution equations are applied for that. Subsequent application of mixing zone models improves the discharge design and allows for assessment of potential environmental impacts. The discharge siting is then improved by considering also water quality parameters using a combined modeling approach coupling a near-field model to a far-field model. The final tier presents a dynamically coupled modeling system, which is necessary for large discharge flows and complex environmental conditions, where a feedback mechanism is necessary to couple both models. Results indicate that the tiered approach applied to modeling methods is capable to assess potential impacts of desalination plant effluents on the receiving waters and to improve the discharge system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

b :

jet width (radial distance from centerline where 1/e of centerline quantity) (m)

C :

substance concentration (mg/ℓ,kg/m3)

D :

internal pipe diameter (m)

F o :

initial (source) densimetric Froude number (–)

g :

gravitational acceleration (m/s2)

g′:

reduced gravity, g′ = ∆ρ/ρg (m/s2)

H :

head above datum/water depth (m)

j o :

buoyancy flux per diffuser length, j o  = gq o (m3/s2)

J o :

buoyancy flux (m4/s3)

h o :

height of discharge port (m)

:

riser spacing (m)

L :

length of the considered pipe section (m)

L M :

momentum length scale (m)

M :

slot jet/plume transition length scale M  = m o /j 2/3 o (m)

m :

crossflow length scale m  = m o /u 2 a (m)

m ′:

stratification length scale m ′ = m 1/3 o 1/3 (m)

b ′:

stratification/plume length scale b ′ = j 1/3 o 1/2 (m)

a :

stratification/crossflow length scale a  = u a 1/2 (m)

m :

momentum flux per diffuser length (m3/s2)

M :

momentum flux (m4/s2)

Q :

total flow through outfall system (m3/s)

q :

mass flux per diffuser length (m2/s)

Re :

Reynolds number Re = VD/ν (–)

S :

dilution, S = Co/C (–)

t :

time (s)

t M :

jet/plume time scale t M  = m a /j o (s)

t m :

jet/crossflow time scale t m  = m a /u 3 a [s] (s)

T 90 :

the time taken for 90 % of the bacteria to die-off (h)

u, v, w :

velocity (m/s)

U, V, W :

mean velocity (m/s)

x, y, z :

Cartesian coordinates (m)

μ:

dynamic viscosity (Ns/m2)

ν:

kinematic viscosity (m2/s)

ε:

stratification parameter, ε = −(ga)(dρa/dz)

θ:

slope or discharge angle (°)

ρ:

density (kg/m3)

a :

ambient

b :

background

B :

bottom/bed

c :

centerline

e :

effluent

ff :

far-field

i :

impingement point

min :

minimal

max :

maximum

nf :

near-field

o :

initial quantity

tot :

total

References

  • Akar, P. J., & Jirka, G. H. (1995). Buoyant spreading processes in pollutant transport and mixing. Part II: Upstream spreading in weak ambient current. Journal of Hydraulic Research, 33(1), 87–100.

    Article  Google Scholar 

  • Alspach, B., Burch, R., & Baudish, P. (2009). Seawater desalination in Australia: Water supply solutions without environmental cost. In Proceedings of the IDA World Congress on Desalination and Water Reuse—Atlantis. The Palm, Dubai, UAE, November 7–12, 2009.

    Google Scholar 

  • ANZECC. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

    Google Scholar 

  • Bleninger, T., & Jirka, G. H. (2008). Modelling and environmentally sound management of brine discharges from desalination plants. Desalination, 221(1–3), 585–597.

    Article  Google Scholar 

  • Bleninger, T., & Jirka, G. H. (2011). Mixing zone regulation for effluent discharges into EU waters. In Proceedings of the ICE—Water Management 165.

    Google Scholar 

  • Bleninger, T., Jirka, G. H., Lattemann, S., Purnama, A., Al-Barwani, H.H., & Doneker, R.L. (2009). BrineDis: Environmental planning, prediction and management of brine discharges from desalination plants. Project Report, Middle East Desalination Research Center (MEDRC).

    Google Scholar 

  • Bleninger, T., Niepelt, A., & Jirka, G. H. (2010). Desalination plant discharge calculator. Desalination and Water Treatment, 13, 156–173.

    Article  Google Scholar 

  • BMT WBM. (2013). Reports for EIS on Olympic Dam, Australia. Download from www.bmtwbm.com.au.

  • Botelho, D. A., Barry, M. E., Collecutt, G. C., Brook, J., & Wiltshire, D. (2013). Linking near- and far-field hydrodynamic models for simulation of desalination plant brine discharges. Journal of Water Science and Technology 67(6), 1194–207. doi:10.2166/wst.2013.673.

  • Brooks, N. H. (1960). Diffusion of sewage effluent in an ocean current. In Proceedings of 1st International Conference on Waste Disposal in the Marine Environment. University of California, Pergamon Press, New York.

    Google Scholar 

  • Brooks, N. H. (1980). Synthesis of stratified flow phenomena for design of ocean outfalls. In Proceedings of 2nd International Symposium on Stratified Flows (pp. 809–831). Trondheim, Norway.

    Google Scholar 

  • Brooks, N. H. (1984). Dispersal of wastewater in the ocean—a cascade of processes at increasing scales. In Proceedings of Conference on Water for Resource Development. Coeur d’Alene.

    Google Scholar 

  • Brooks, N. H. (1988). Seawater intrusion and purging in tunneled outfall. Schweizer Ingenieur und Architect, 106(6), 156–160.

    MathSciNet  Google Scholar 

  • Brooks, N. H., & Koh, R. C. Y. (1965). Discharge of sewage effluent from a line source into a stratified ocean. Proceedings of XI Congress IAHR, Leningrad, Paper No. 2.19.

    Google Scholar 

  • Buros, O. K. (2000). The ABCs of desalting. http://www.idadesal.org/pdf/ABCs1.pdf.

  • Choi, K. W., & Lee, H. W. (2007). Distributed entrainment sink approach for modelling mixing and transport in the intermediate field. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 133(7), 804–815.

    Article  Google Scholar 

  • Christie, S., & Bonnélye, V. (2009). Perth, Australia: Two-year feed back on operation and environmental impact. Proceedings of IDA World Congress on Desalination and Water Reuse—Atlantis. The Palm, Dubai, UAE, November 7–12, 2009.

    Google Scholar 

  • CIS-WFD. (2010). Technical background document on identification of mixing zones. Elektronisch verfügbar auf. https://circabc.europa.eu.

  • CorTime. (2008). v2.0—user instructions. September 29, 2008. MixZon Inc. (www.mixzon.com).

  • Deltares. (2013). Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User manual hydro-morphodynamics version 3.15.30059, September 6, 2013. Deltares, Delft.

    Google Scholar 

  • Doneker, R. L., & Jirka, G. H. (1990). CORMIX1: An expert systems for hydrodynamic mixing zone analysis of conventional and toxic submerged single port discharges. Technical report. De Frees Hydraulic Laboratory, School of Civil and Environmental Engineering, Cornell University.

    Google Scholar 

  • Doneker, R. L., & Jirka, G. H. (2007). CORMIX user manual: A hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. Portland, OR: MixZon Inc.

    Google Scholar 

  • European Union. (2008). Directive 2008/105/EC of the European Parliament on environmental quality standards in the field of water policy.

    Google Scholar 

  • Feitosa, R. C., Rosman, P. C. C., Bleninger, T., & Wasserman, J. C. (2013). Coupling bacterial decay and hydrodynamic models for sewage outfall simulation. Journal of Applied Water Engineering and Research, 1, 137–147.

    Article  Google Scholar 

  • Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., & Brooks, N. H. (1979). Mixing in Inland and coastal waters. New York: Academic Press.

    Google Scholar 

  • Goebel, O. (2005). Markets and desalination technologies in brief. DME seminar on the introduction to seawater desalination, Berlin.

    Google Scholar 

  • Holley, E. R., & Jirka, G. H. (1986). Mixing and solute transport in rivers. Field Manual, U.S. Army Corps of Engineers, Waterways Experiment Station, Technical report E 86 11.

    Google Scholar 

  • Jirka, G. H. (1979). Discussion of Roberts, P.J.W.: Line plume and ocean outfall dispersion. Journal of the Hydraulics Division ASCE 102(12), 1573–1575.

    Google Scholar 

  • Jirka, G. H. (1982). Turbulent buoyant jets in shallow fluid layers. In W. Rodi (Ed.), Turbulent jets and plumes. New York: Pergamon Press.

    Google Scholar 

  • Jirka, G. H. (1994). Shallow jets. In P. A. Davies & M. J. Valente (Eds.), Recent advances in the fluid mechanics of turbulent jets and plumes. Dordrecht: Kluwer Academics Publishers.

    Google Scholar 

  • Jirka, G. H. (2004). Integral model for turbulent buoyant jets in unbounded stratified flows. Part 1: The single round jet. Environmental Fluid Mechanics, 4, 1–56.

    Article  Google Scholar 

  • Jirka, G. H. (2006a). Improved discharge configurations for brine effluents from desalination plants. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers (submitted).

    Google Scholar 

  • Jirka, G. H. (2006b). Integral model for turbulent buoyant jets in unbounded stratified flows. Part 2: Plane jet dynamics resulting from multiport diffuser jets. Environmental Fluid Mechanics, 6, 43–100.

    Article  Google Scholar 

  • Jirka, G. H. (2008). Improved discharge configurations for brine effluents from desalination plants. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 134, 116–120.

    Article  Google Scholar 

  • Jirka, G. H., Abraham, G., & Harleman, D. R. F. (1976). An assessment of techniques for hydrothermal prediction. Department of Civil Engineering, MIT for US Nuclear Regulatory Commission, Cambridge.

    Google Scholar 

  • Jirka, G. H., Adams, E., & Stolzenbach, K. (1981). Properties of surface buoyant jets. Journal of the Hydraulics Division ASCE, 106(11), 1467–1487.

    Google Scholar 

  • Jirka, G. H., & Akar, P. J. (1991). Hydrodynamic classification of submerged single-port discharges. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 117, 1095–1111, HY9.

    Google Scholar 

  • Jirka, G. H., Bleninger, T., Burrows, R., & Larsen, T. (2004a). Environmental quality standards in the EC-water framework directive: Consequences for water pollution control for point sources. European Water Management Online, European Water Association (EWA). www.ewaonline.de.

  • Jirka, G. H., Bleninger, T., Burrows, R., & Larsen, T. (2004b). Management of point source discharges into rivers. Where do environmental quality standards in the new EC-water framework directive apply? Journal of River Basin Management, 2(3), 225−233.

    Google Scholar 

  • Jirka, G. H., & Doneker, R. L. (1991a). Hydrodynamic classification of submerged multiport diffuser discharges. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 117, 1113–1128, HY9.

    Google Scholar 

  • Jirka, G. H., & Doneker, R. L. (1991b). Hydrodynamic classification of submerged single port discharges. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 117, 1095–1112.

    Article  Google Scholar 

  • Jirka, G. H., Doneker, R. L., & Hinton, S. W. (1996). User’s manual for CORMIX: A hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. US Environmental Protection Agency, Technical report, Environmental Research Lab, Athens, Georgia, USA.

    Google Scholar 

  • Jirka, G. H., & Lee, J. H.-W. (1994). Waste disposal in the ocean. In M. Hino (Ed.), Water quality and its control. Rotterdam: Balkema.

    Google Scholar 

  • Lattemann, S., & Höpner, T. (2003). Seawater desalination: Impacts of brine and chemical discharge on the marine environment. L’Aquila, Italy: Desalination Publications.

    Google Scholar 

  • Law, A. W. K., Lee, C. C., & Qi, Y. (2002). CFD modeling of a multiport diffuser in an oblique current. Proceedings of Marine Waste Water Discharges. MWWD 2002, Istanbul, Turkey.

    Google Scholar 

  • Lee, J. H. W., & Neville-Jones, P. (1987). Initial dilution of horizontal jet in crossflow. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 113(5), 615–629.

    Article  Google Scholar 

  • Lesser, G. R., Roelvink, J. A., van Kester, J A Th M, & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Journal of Coastal engineering, 51, 883–915.

    Article  Google Scholar 

  • Mendez Diaz, M. M., & Jirka, G. H. (1996). Trajectory of multiport diffuser discharges in deep co-flow. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 122(8), 428–435.

    Article  Google Scholar 

  • Mickley, M. (2006). Membrane concentrate disposal: Practices and regulation. Mickley and Associates, sponsored by the US Department of Interior, Bureau of Reclamation, Agreement No. 98-FC-0054.

    Google Scholar 

  • Morelissen, R., van der Kaaij, T., & Bleninger, T. (2013). Dynamic coupling of near field and far field models for simulating effluent discharges. Journal of Water Science and Technology 67(10), doi:10.2166/wst.2013.081.

  • Morelissen, R., Vlijm, R., Hwang, I., Doneker, R., & Ramachandran, A. S. (2014). Hydrodynamic modelling of large-scale cooling water outfalls with a dynamically coupled near field—far field modelling system. Proceedings of the International Conference on Desalination, Environment and Marine Outfall Systems (ICDEMOS), Muscat, Oman.

    Google Scholar 

  • Nash, J. D. (1995). Buoyant discharges into reversing ambient current. Masters thesis, DeFrees Hydraulics Laboratory, Cornell University, Ithaca, NY.

    Google Scholar 

  • Ragas, A. M. J., Hams, J. L. M., & Leuven, R. S. E. W. (1997). Selecting water quality models for discharge permitting. European Water Pollution Control, 7(5), 59–67.

    Google Scholar 

  • Ridge, M. M. (2002). Three-dimensional simulation of pollutant dispersion in coastal water. PhD thesis, Universitat Politecnica de Catalunya, Barcelona.

    Google Scholar 

  • Roberts, P. J. W. (1979). Line plume and ocean outfall dispersion. Journal of the Hydraulics Division ASCE, 105(4), 313–331.

    Google Scholar 

  • Roberts, P. J. W. (1980). Ocean outfall dilution: Effects of currents. Journal of the Hydraulics Division ASCE, 106(5), 310–313.

    Google Scholar 

  • Roberts, P. J. W. (1986). Engineering of ocean outfalls. In G. Kullenberg (Ed.), The role of oceans as a waste disposal option. NATO ASI series C (Vol. 172, pp. 73–109).

    Google Scholar 

  • Roberts, P. J. W. (1990). Outfall design considerations. In B. Le Mehaute & D. M. Hanes (Eds.), The sea: Ocean engineering science. New York: Wiley-Interscience.

    Google Scholar 

  • Roberts, P. J. W. (1996). Sea outfalls. In V. P. Singh & W.H. Hager (Eds.), Environmental hydraulics. Dordrecht: Kluwer.

    Google Scholar 

  • Roberts, P. J. W., Snyder, W. H., & Baumgartner, D. J. (1989a). Ocean outfalls. I. Submerged waste field formation. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 115(1), 1–25.

    Google Scholar 

  • Roberts, P. J. W., Snyder, W. H., Baumgartner, D. J. (1989b). Ocean outfalls. II. Spatial evolution of submerged waste field. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 115(1), 26–48.

    Google Scholar 

  • Roberts, P. J. W., Snyder, W. H., Baumgartner, D. J. (1989c). Ocean outfalls. III. Effect of diffuser design on submerged waste field. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 115(1), 49–70.

    Google Scholar 

  • Rouse, H., Yih, C. S., Humphreys, H. W. (1952). Gravitational convection from a boundary source. Tellus, 4, 201–210.

    Google Scholar 

  • Sydney Water (2005). Environmental assessment for Sydney’s desalination project. GHD, Fichtner (consultants report).

    Google Scholar 

  • Verbruggen, W., Morelissen, R., & Freixa, C. M. (2014). Modelling of dense brine discharges in Oman: Recirculation and environmental aspects—a case study. Proceedings of the International Conference on Desalination, Environment and Marine Outfall Systems (ICDEMOS), Muscat, Oman.

    Google Scholar 

  • Water Framework Directive (WFD). (2000). Official publication of the European Community, L327, Brussels.

    Google Scholar 

  • Wood, I. R., Bell, R. G., & Wilkinson, D. L. (1993). Ocean disposal of wastewater. Singapore: World Scientific.

    Google Scholar 

  • World Health Organization (WHO). (2007). Desalination for safe water supply: Guidance for the health and environmental aspects applicable to desalination.

    Google Scholar 

  • Zhan, P., Yao F., Kartadikaria A. R., Viswanadhapalli Y., Gopalakrishnan G., & Hoteit, I. (2014). Far-field ocean conditions and concentrate discharges modeling along the Saudi Coast of the Red Sea. In T. M. Missimer, B Jones & R. G. Maliva (this volume).

    Google Scholar 

  • Zhang, H., & Baddour, R. E. (1998). Maximum penetration of vertical round dense jets at small and large Froude numbers. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers, 124(5), 550–553.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Bleninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bleninger, T., Morelissen, R. (2015). Tiered Modeling Approach for Desalination Effluent Discharges. In: Missimer, T., Jones, B., Maliva, R. (eds) Intakes and Outfalls for Seawater Reverse-Osmosis Desalination Facilities. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-13203-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13203-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13202-0

  • Online ISBN: 978-3-319-13203-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics