Skip to main content

Design of Wireless Sensor Network for Intra-vehicular Communications

  • Conference paper
Wired/Wireless Internet Communications (WWIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8458))

Included in the following conference series:

Abstract

The number of sensor nodes in the vehicle has increased significantly due to the increasing of different vehicular applications. Since, the wired architecture is not scalable and flexible because of the internal structure of the vehicle, therefore, there is an increasing level of appeal to design a system in which the wired connections to the sensor nodes are replaced with wireless links. Design a wireless sensor network inside the vehicle is more challenging to other networks, e.g., wireless, sensor and computer networks, because of the complex environment inside the vehicle. In this paper, we design a wireless sensor network for intra-vehicular communications. Firstly, we discuss about the link design between a base station and a sensor node and then we design a network scenario inside the vehicle for reliable communication. Finally, the performance is evaluated in terms of network reliability. The simulation results assist to design a robust system for intra-vehicular communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tindell, K.W., Hansson, H., Wellings, A.J.: Analysing real-time communications: Controller Area Network (CAN). In: Proc. of 15th Real-Time Systems Symposium, pp. 259–263. IEEE Computer Society Press (1994)

    Google Scholar 

  2. Tindell, K., Burns, A.: Guaranteeing Message Latencies on Controller Area Network (CAN). In: Proc. of 1st International CAN Conference, pp. 1–11 (1994)

    Google Scholar 

  3. Tsai, H.M., Viriyasitavat, W., Tonguz, O.K., Saraydar, C., Talty, T., Macdonald, A.: Feasibility of In-car Wireless Sensor Networks: A Statistical Evaluation. In: Proc. IEEE SECON, pp. 101–111 (2007)

    Google Scholar 

  4. Tonguz, O.K., Tsai, H.M., Saraydar, C., Talty, T., Macdonald, A.: Intra-car wireless sensor networks using RFID: Opportunities and challenges. In: Proc. INFOCOM MOVE Workshop, pp. 43–48 (2007)

    Google Scholar 

  5. Tsai, H.M., Tonguz, O.K., Saraydar, C., Talty, T., Ames, M., Macdonald, A.: Zigbee-based intra-car wireless sensor networks: A case study. IEEE Wireless Commun. 14, 67–77 (2007)

    Article  Google Scholar 

  6. Niu, W., Li, J., Liu, S., Talty, T.: Intra-vehicle ultra-wideband communication testbed. In: Proc. MILCOM, pp. 1–6 (2007)

    Google Scholar 

  7. Cacciapuoti, A.S., Calabrese, F., Caleffi, M., Di Lorenzo, G., Paura, L.: Human-mobility enabled wireless networks for emergency communications during special events. Elsevier Pervasive and Mobile Computing 9, 472–483 (2013)

    Article  Google Scholar 

  8. Cacciapuoti, A.S., Calabrese, F., Caleffi, M., Di Lorenzo, G., Paura, L.: Human-mobility enabled networks in urban environments: Is there any (mobile wireless) small world out there? Elsevier Ad Hoc Networks 10, 1520–1531 (2012)

    Article  Google Scholar 

  9. Hashemi, H.: Impulse response modeling of indoor radio propagation channels. IEEE J. Sel. Areas Commun. 11, 967–978 (1993)

    Article  Google Scholar 

  10. Saleh, A., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE J. Sel. Areas Commun., SAC-5, 128–137 (1987)

    Google Scholar 

  11. Moghimi, A.R., Tsai, H.M., Saraydar, C.U., Tonguz, O.K.: Characterizing IntraCar Wireless Channels. IEEE Transactions on Vehicular Technology 58, 5299–5305 (2009)

    Article  Google Scholar 

  12. Woo, S., Kim, H.: Estimating Link Reliability in Wireless Networks: An Empirical Study and Interference Modeling. In: Proc. INFOCOM, pp. 1–5 (2010)

    Google Scholar 

  13. Ellims, M., Parker, S., Zurlo, J.: Design and Analysis of a Robust Real-Time Engine. IEEE Micro 22, 20–27 (2002)

    Article  Google Scholar 

  14. Xing, B., Mehrotra, S., Venkatasubramanian, N.: RADcast: Enabling reliability guarantees for content dissemination in ad hoc networks. In: Proc. IEEE INFOCOM, pp. 1998–2006 (2009)

    Google Scholar 

  15. Cacciapuoti, A.S., Caleffi, M., Paura, L.: A theoretical model for opportunistic routing in ad hoc networks. In: Proc. of International Conference on Ultra Modern Telecommunications Workshops (ICUMT 2009), pp. 1–7 (2009)

    Google Scholar 

  16. Cacciapuoti, A.S., Caleffi, M., Paura, L.: Optimal Constrained Candidate Selection for Opportunistic Routing. In: Proc. of IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5 (2010)

    Google Scholar 

  17. Ma, X., Zhang, J., Yin, X., Trivedi, K.S.: Design and Analysis of a Robust Broadcast Scheme for VANET Safety-Related Services. IEEE Transactions on Vehicular Technology 61, 46–61 (2012)

    Article  Google Scholar 

  18. Francisco, R.D., Huang, L., Dolmans, G., Groot, H.D.: Coexistence of ZigBee wireless sensor networks and Bluetooth inside a vehicle. In: IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2700–2704 (2009)

    Google Scholar 

  19. Higgins, M.D., Green, R.J., Leeson, M.S.: Channel viability of intra-vehicle optical wireless communications. In: Proc. IEEE GLOBECOM Workshops, pp. 813–817 (2011)

    Google Scholar 

  20. Arai, T., Shirai, T., Watanabe, Y., Maehara, F.: Coverage performance of UWB in-car wireless communication in the presence of multiple terminals. In: IEEE Radio and Wireless Symposium (RWS), pp. 111–114 (2012)

    Google Scholar 

  21. Yiming, Z., Xianglong, Y., Xishan, G., Mingang, Z., Liren, W.: A Design of Greenhouse Monitoring and Control System Based on ZigBee Wireless Sensor Network. In: Proc of International Conference on Wireless Communications, Networking and Mobile Computing, pp. 2563–2567 (2007)

    Google Scholar 

  22. Chen, L., Yang, S., Xi, Y.: Based on ZigBee wireless sensor network the monitoring system design for chemical production process toxic and harmful gas. In: Proc. of International Conference on Computer, Mechatronics, Control and Electronic Engineering, pp. 425–428 (2010)

    Google Scholar 

  23. Rahman, M.A.: Reliability Analysis of ZigBee based Intra-vehicle Wireless Sensor Networks. In: Proc of Nets4Cars 6th International Workshop on Communication Technologies for Vehicles, pp. 101-112 (2014)

    Google Scholar 

  24. MPR/MIB mote hardware users manual, http://www.xbow.com

  25. Cacciapuoti, A.S., Caleffi, M., Paura, L., Savoia, R.: Decision Maker Approaches for Cooperative Spectrum Sensing: Participate or Not Participate in Sensing? IEEE Transactions on Wireless Communications 12, 2445–2457 (2013)

    Article  Google Scholar 

  26. Cacciapuoti, A.S., Caleffi, M., Paura, L.: Reactive routing for mobile cognitive radio ad hoc networks. Elsevier Ad Hoc Networks 10, 803–805 (2012)

    Article  Google Scholar 

  27. Rahman, M.A., Caleffi, M., Paura, L.: Joint path and spectrum diversity in cognitive radio ad-hoc networks. EURASIP Journal on Wireless Communications and Networking 2012(1), 1–9 (2012)

    Article  Google Scholar 

  28. Cacciapuoti, A.S., Calcagno, C., Caleffi, M., Paura, L.: CAODV: Routing in Mobile Ad-hoc Cognitive Radio Networks. In: Proc. of IEEE IFIP Wireless Days 2010, pp. 1–5 (2010)

    Google Scholar 

  29. Cacciapuoti, A.S., Caleffi, M., Paura, L.: Widely Linear Cooperative Spectrum Sensing for Cognitive Radio Networks. In: Proc. of IEEE Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5 (2010)

    Google Scholar 

  30. Cacciapuoti, A.S., Caleffi, M., Izzo, D., Paura, L.: Cooperative Spectrum Sensing Techniques with Temporal Dispersive Reporting Channels. IEEE Transactions on Wireless Communications 10, 3392–3402 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rahman, M.A. (2014). Design of Wireless Sensor Network for Intra-vehicular Communications. In: Mellouk, A., Fowler, S., Hoceini, S., Daachi, B. (eds) Wired/Wireless Internet Communications. WWIC 2014. Lecture Notes in Computer Science, vol 8458. Springer, Cham. https://doi.org/10.1007/978-3-319-13174-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13174-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13173-3

  • Online ISBN: 978-3-319-13174-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics