Skip to main content

Control of Smart Grid Residential Buildings with Demand Response

  • Chapter
  • First Online:
Chaos Modeling and Control Systems Design

Part of the book series: Studies in Computational Intelligence ((SCI,volume 581))

Abstract

The higher penetration of renewable energies into the electrical grid and the increasing power demand will transform the current grid model. The traditional production-oriented grid will be replaced by a more dynamic grid, known as the Smart Grid, where consumption will be adapted to the momentary available production. Getting flexibility in the demand side is a multidisciplinary challenge that is gaining the attention of both academia and industry. This chapter describes a residential building that can support the electrical grid providing flexibility (demand response) to a third party (aggregator) and discusses about computational intelligence techniques to be used in this scenario. For that purpose, a virtual power plant of a residential building is used to regulate the energy resources in the building in an optimal way and bring flexibility to the grid by aggregating demand response of households. The virtual power plant receives as inputs sensor data of the building and also external information from the electricity market, the customers, the aggregator and prediction models. The computational intelligence of the virtual power plant processes all these inputs to make decisions about the flexibility to provide to the grid and to control the electricity systems in the building using a model predictive control. The content of the chapter is supported by a description of a pilot study carried out in the city of Aarhus in Denmark, where a prototype of a virtual power plant will monitor and control a building with 159 apartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing United States demand response resources at about 5.8 per cent of 2008 summer peak demand. Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 per cent of peak demand) by 2019.

  2. 2.

    Passive infra-red (PIR) sensors are used for motion detection.

  3. 3.

    The Pareto front is a curve that represents the optimal performance for a multi-objective optimisation with conflicting goals.

  4. 4.

    Computational fluid dynamics (CFD) is a branch of fluid mechanics that solve problems related with fluid flows using numerical methods and algorithms.

References

  1. Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A.: Foundations of computational intelligence volume 3. In: Studies in Computational Intelligence, vol. 203. Springer, Berlin. (2009). doi:10.1007/978-3-642-01085-9

  2. Albano, M., Ferreira, L., Le Guilly, T., Ramiro, M., Faria, J.E., Duenas, L.P., Ferreira, R., Gaylard, E., Cubas, D.J., Roarke, E., Lux, D., Scalari, S., Sorensen, S.M., Gan-golells, M., Pinho, L.M., Skou, A.: The ENCOURAGE ICT architecture for heterogeneous smart grids. In: Eurocon 2013, IEEE, pp. 1383–1390 (2013). doi:10.1109/EUR0C0N.2013.6625159

  3. Anbazhagan, S., Kumarappan, N.: Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT. Energy Convers. Manag. 78, 711–719 (2014). doi:10.1016/j.enconman.2013.11.031

    Article  Google Scholar 

  4. Andersen, F.M.l., Jensen, S.G., Larsen, H.V., Meibom, P., Ravn, H., Skytte, K., Togeby, M.: Analyses of demand response in Denmark. Technical report 1565, Risø National Laboratory, Roskilde, Denmark (2006)

    Google Scholar 

  5. Arasteh, H, Parsa Moghaddam, M., Sheikh-El-Eslami, M., Abdollahi, A: Integrating commercial demand response resources with unit commitment. Int. J. Electr. Power Energy Syst. 51:153–161 (2013). doi:10.1016/j.ijepes.2013.02.015

  6. Belhomme, R., Cerero, R., Valtorta, G., Eyrolles, P.: The ADDRESS project: developing active demand in smart power systems integrating renewables. In: 2011 IEEE Power and Energy Society General Meeting, IEEE, pp. 1-8 (2011). doi:10.1109/PES.2011.6038975

  7. Belley, C., Gaboury, S., Bouchard, B., Bouzouane, A.: An efficient and inexpensive method for activity recognition within a smart home based on load signatures of appliances. Pervasive Mob. Comput. (2013). doi:10.1016/j.pmcj.2013.02.002

  8. Brandt, J., H Christensen J, M Frohn L, Berkowicz R, Palmgren F (2000) The DMU-ATMITHOR air pollution forecast system—system description. Technical report 321, National Environmental Research Institute, Roskilde, Denmark

    Google Scholar 

  9. Braun, J., Montgomery, K., Chaturvedi, N.: Evaluating the performance of building thermal mass control strategies. HVAC&R Research 7(4), 403–428 (2001). doi:10.1080/10789669.2001.10391283

    Article  Google Scholar 

  10. Buchholz, B., Nestle, D., Kiessling, A.: Individual customers’ influence on the operation of virtual power plants. In: 2009 IEEE Power and Energy Society General Meeting, pp. 1–6 (2009). doi:10.1109/PES.2009.5275401

  11. Carpaneto, E., Chicco, G.: Probabilistic characterisation of the aggregated residential load patterns. IET Gener. Transm. Distrib. 2(3), 373 (2008). doi:10.1049/iet-gtd:20070280

    Article  Google Scholar 

  12. Danish Energy Agency: The PSO programmes and the energy agreement—Strategy 2010 + for the ForskEL and ForskVE programmes. Technical report, Copenhagen (2009), https://www.energinet.dk/

  13. Ehrhardt-Martinez, K., Donnelly, K.A., Laitner, J.A.S., York, D., Talbot, J., Friedrich, K.: Advanced metering initiatives and residential feedback programs : a meta-review for household electricity-saving opportunities. Technical report E105, American Council for an Energy-Efficient Economy, Washington (2010)

    Google Scholar 

  14. Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid—the new and improved power grid: a survey. IEEE Commun. Surv. Tutorials 14(4), 944–980 (2012). doi:10.1109/SURV.2011.101911.00087

    Article  Google Scholar 

  15. Giordano, V., Meletiou, A., Covrig, C.F., Mengolini, A., Ardelean, M., Fulli, G., Filiou, C., Sanchez, M. Smart grid projects in Europe : lessons learned and current developments 2012 update. Technical report EUR 25815 EN, Join Research Centre—Institute for Energy and Transport, Petten (2013). doi:10.2790/82707

  16. Giusti, A., Garvin, S., Philimis, P.: A system for real-time calculation and monitoring of energy performance and carbon emissions of RET systems and buildings. In: Recent Researches in Environmental and Geological Sciences, pp. 174–179. WSEAS Press (2012)

    Google Scholar 

  17. Goldman, C., Reid, M., Levy, R.: Coordination of energy efficiency and demand response. Technical report LBNL-3044E, Ernest Orlando Lawrence Berkeley National Laboratory (2010)

    Google Scholar 

  18. Janga Reddy, M., Nagesh Kumar, D.: An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim. 39(1), 49–68 (2007). doi:10.1080/03052150600930493

    Article  MathSciNet  Google Scholar 

  19. Johal, H., Anaparthi, K., Black, J.: Demand response as a strategy to support grid operation in different time scales. In: 2012 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, pp. 1461–1467 (2012). doi:10.1109/ECCE.2012.6342642

  20. Karatasou, S., Santamouris, M., Geros, V.: Modeling and predicting building’s energy use with artificial neural networks: methods and results. Energy Build. 38(8), 949–958 (2006). doi:10.1016/j.enbuild.2005.11.005

    Article  Google Scholar 

  21. Kolokotsa, D., Pouliezos, A., Stavrakakis, G., Lazos, C.: Predictive control techniques for energy and indoor environmental quality management in buildings. Build. Environ. 44(9), 1850–1863 (2009). doi:10.1016/j.buildenv.2008.12.007

    Article  Google Scholar 

  22. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006). doi:10.1016/j.ress.2005.11.018

    Article  Google Scholar 

  23. Kusiak, A., Xu, G.: Modeling and optimization of HVAC systems using a dynamic neural network. Energy 42(1), 241–250 (2012). doi:10.1016/j.energy.2012.03.063

    Article  Google Scholar 

  24. Lamarche J, Cheney K, Christian S, Roth K (2011) Home energy management products and trends. Technical report, Fraunhofer, Cambridge. http://cse.fraunhofer.org/

  25. Law, Y.W., Alpcan, T., Lee, V.C., Lo, A., Marusic, S., Palaniswami, M.: Demand response architectures and load management algorithms for energy-efficient power grids: a survey. In: 2012 Seventh International Conference on Knowledge, Information and Creativity Support Systems, pp. 134–141 (2012). doi:10.1109/KICSS.2012.45

  26. Marik, K., Rojicek, J., Stluka, P., Vass, J.: Advanced HVAC control: theory vs. reality. In: 18th IFAC World Congress, pp. 3108–3113 (2011)

    Google Scholar 

  27. Marques, A., Serrano, M., Karnouskos, S., Marron, P.J., Sauter, R., Bekiaris, E., Kesi-dou, E., Hoglund, J.: NOBEL—a neighborhood oriented brokerage electricity and monitoring system. In: Hatziargyriou, N., Dimeas, A., Tomtsi, T., Wei-dlich, A. (eds.) Energy-Efficient Computing and Networking, vol. 54, pp. 187–196, Springer, Berlin (2011), doi:10.1007/978-3-642-19322-4_20

  28. Mathieu, J.L., Price, P.N., Kiliccote, S., Piette, M.A.: Quantifying changes in building electricity use, with application to demand response. IEEE Trans. Smart Grid 2(3), 507–518 (2011). doi:10.1109/TSG.2011.2145010

    Article  Google Scholar 

  29. Motegi, N., Piette, M.A., Watson, D.S., Kiliccote, S., Xu, P.: Introduction to commercial building control strategies and techniques for demand response. Technical report LBNL-59975, Lawrence Berkeley National Laboratory, Berkeley (2007)

    Google Scholar 

  30. Office of the National Coordinator for Smart Grid Interoperability: NIST framework and roadmap for smart grid interoperability standards, release 2.0. Technical report 1108R2 (2012)

    Google Scholar 

  31. Oldewurtel, F., Parisio, A., Jones, C.N., Morari, M., Gyalistras, D., Gwerder, M., Stauch, V., Lehmann, B., Wirth, K.: Energy efficient building climate control using stochastic model predictive control and weather predictions. In: American Control Conference (ACC), pp. 5100–5105 (2010)

    Google Scholar 

  32. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM Symposium on Applied Computing—SAC ‘02 3:603 (2002). doi:10.1145/508895.508907

  33. Paulou, J., Lonsdale, J., Jamieson, M., Neuweg, I., Trucco, P., Maio, P., Blom, M., Warringa, G.: Financing the energy renovation of buildings with cohesion policy funding. Technical report ENER/C3/2012-415, European Union (2014). doi:10.2833/18766

  34. Pipattanasomporn, M., Kuzlu, M., Rahman, S.: Teklu Y (2014) Load profiles of selected major household appliances and their demand response opportunities. IEEE Trans. Smart Grid 5(2), 742–750 (2013). doi:10.1109/TSG.2268664

    Article  Google Scholar 

  35. Ritzer, G., Dean, P., Jurgenson, N.: The coming of age of the prosumer. Am. Behav. Sci. 56(4), 379–398 (2012). doi:10.1177/0002764211429368

    Article  Google Scholar 

  36. Saboori, H., Mohammadi, M., Taghe, R.: Virtual power plant (VPP), definition, concept, components and types. In: 2011 Asia-Pacific Power and Energy Engineering Conference, IEEE, pp. 1–4 (2011). doi:10.1109/APPEEC.2011.5749026

  37. Sankur, M., Arnold, D., Auslander, D.: An architecture for integrated commercial building demand response. In: 2013 IEEE Power and Energy Society General Meeting, pp. 1–5 (2013). doi:10.1109/PESMG.2013.6672800

  38. Siano, P.: Demand response and smart grids—a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014). doi:10.1016/j.rser.2013.10.022

    Article  Google Scholar 

  39. Silva, P.G.D., Karnouskos, S., Ilic, D.: A survey towards understanding residential prosumers in smart grid neighbourhoods. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), IEEE, section II, pp. 1–8 (2012). doi:10.1109/ISGTEurope.2012.6465864

  40. Smart Energy Demand Coalition: A demand response action plan For Europe—regulatory requirements and market models. Technical report, Brussels (2013). http://sedc-coalition.eu/

  41. Stadler, M., Siddiqui, A., Marnay, C., Aki, H., Lai, J.: Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response. In: 22nd Annual Western Conference, Advanced Workshop in Regulation and Competition (2009)

    Google Scholar 

  42. Strbac, G.: Demand side management: benefits and challenges. Energy Policy 36(12), 4419–4426 (2008). doi:10.1016/j.enpol.2008.09.030

    Article  Google Scholar 

  43. Strengers, Y.: Designing eco-feedback systems for everyday life. In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems—CHI ‘11 p. 2135 (2011). doi:10.1145/1978942.1979252

  44. Teodosiu, C., Hohota, R., Rusaouen, G., Woloszyn, M.: Numerical prediction of indoor air humidity and its effect on indoor environment. Build. Environ. 38(5), 655–664 (2003). doi:10.1016/S0360-1323(02)00211-1

    Article  Google Scholar 

  45. Timpe, C.: Smart domestic appliances supporting the system integration of renewable energy. Technical report, Oko-Institut (2009). www.smart-a.org

  46. Ward, J.K., Wall, J., West, S., Dear, R.D.: Beyond comfort—managing the impact of HVAC control on the outside world. In: Air Conditioning and the Low Carbon Cooling Challenge, pp. 27–29. London (2008)

    Google Scholar 

  47. Yu, Z., Dexter, A.: Hierarchical fuzzy control of low-energy building systems. Sol. Energy 84(4), 538–548 (2010). doi:10.1016/j.solener.2009.03.014

    Article  Google Scholar 

  48. Zavala, V.M., Flores-Tlacuahuac, A.: Stability of multiobjective predictive control: A utopia-tracking approach. Automatica 48, 2627–2632 (2012). doi:10.1016/j.automatica.2012.06.066

    Article  MATH  MathSciNet  Google Scholar 

  49. Zavala, V.M., Wang, J., Leyffer, S., Constantinescu, E.M., Anitescu, M., Conzelmann, G.: Proactive energy management for next-generation building systems. In: Fourth National Conference of IBPSA-USA, New York (2010)

    Google Scholar 

  50. Zervos, A., Kjaer, C., Azau, S., Scola, J., Quesada, J., Bianchin, R.: Pure power wind energy targets for 2020 and 2030 pure power. Technical report, European Wind Energy Association (2009). http://www.ewea.org/

  51. Zhou, Z., Zhang, X., Lee, Y.M.: An inventory control and pricing model for smart building load management. In: 5th Innovative Smart Grid Technologies Conference, pp. 1–5. Washington (2014)

    Google Scholar 

Download references

Acknowledgements

The work in this document has been funded by the Danish Energy Agency project: Virtual Power Plant for Smart Grid Ready Buildings and Customers (no. 12019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Rotger-Griful .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rotger-Griful, S., Jacobsen, R.H. (2015). Control of Smart Grid Residential Buildings with Demand Response. In: Azar, A., Vaidyanathan, S. (eds) Chaos Modeling and Control Systems Design. Studies in Computational Intelligence, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-13132-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13132-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13131-3

  • Online ISBN: 978-3-319-13132-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics