Skip to main content

Classification of Heart Disorders Based on Tunable-Q Wavelet Transform of Cardiac Sound Signals

  • Chapter
  • First Online:
Chaos Modeling and Control Systems Design

Part of the book series: Studies in Computational Intelligence ((SCI,volume 581))

Abstract

The mechanical action of the heart generates sounds which can provide diagnostic information about the functioning of the cardiovascular system. Cardiac auscultation is an important means to diagnose heart disorders by listening to the heart sounds using conventional stethoscope. The traditional cardiac auscultation techniques require sophisticated interpretive skills in diagnosis and it requires long time to expertise. The heart sounds often last for a short period of time and pathological splitting of the heart sound is difficult to discern using traditional auscultation because human ears lack desired sensitivity towards heart sounds and murmurs. Therefore, the automatic heart sound analysis using advanced signal processing techniques based on digital acquisition of these sounds can play an important role. The heart sounds can be captured and processed in the form of cardiac sound signals by placing an electronic stethoscope at the appropriate location on the subject’s chest. The cardiac sound signals can be used to extract valuable diagnostic features for detection and identification of the heart valve and other disorders. In this book chapter, a new method for segmentation and classification of cardiac sound signals using tunable-Q wavelet transform (TQWT) has been proposed. The proposed method uses constrained TQWT based segmentation of cardiac sound signals into heart beat cycles. The features obtained from heart beat cycles of separately reconstructed heart sounds and murmur can better represent the various types of cardiac sound signals than that of containing both. Even the parameters evolved during constrained TQWT based separation of heart sounds and murmur can serve as valuable diagnostic features. Therefore, various entropy measures namely time-domain based Shannon entropy, frequency-domain based spectral entropy, and non-linear method based approximate entropy and Lempel-Ziv complexity have been computed for each segmented heart beat cycles. Two features have been created by the parameters that have been optimized while constrained TQWT namely the redundancy and the number of levels of decomposition. These ten features form the final feature set for subsequent classification of cardiac sound signals using artificial neural network (ANN) based technique. In this study, the following classes of cardiac sound signals have been used: normal, aortic stenosis, aortic regurgitation, splitting of S2, mitral regurgitation and mitral stenosis. The performance of the proposed method has been validated with publicly available datasets. The proposed method has provided significant performance in segmentation and classification of cardiac sound signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit, G.,  Lessick, J.,​Gavriely, N.,, Intrator, N.: Acoustic indices of cardiac functionality. In: International Coriference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), pp. 77–83. Setubal, Portugal (2008)

    Google Scholar 

  2. Amit, G., Gavriely, N., Intrator, N.: Cluster analysis and classification of heart sounds. Biomed. Sig. Process Cont. 4(1), 26–36 (2009)

    Article  Google Scholar 

  3. Ari, S., Saha, G.: On a robust algorithm for heart sound segmentation. J. Mech. Med. Biol. 7, 129–150 (2007)

    Article  Google Scholar 

  4. Ari, S., Saha, G.: Classification of heart sounds using empirical mode decomposition based features. Int. J. Med. Eng. Inform. 1(1), 91–108 (2008)

    Article  Google Scholar 

  5. Ari, S., Saha, G.: In search of an optimization technique for artificial neural network to classify abnormal heart sounds. Appl. Soft. Comput. 9(1), 330–340 (2009)

    Article  Google Scholar 

  6. Ari, S., Sensharma, K., Saha, G.: DSP implementation of heart valve disorder detection system from a phonocardiogram signal. J. Med. Eng. Technol. 32(2), 122–132 (2008)

    Article  Google Scholar 

  7. Ari, S., Hembram, K., Saha, G.: Detection of cardiac abnormality from PCG signal using LMS based least square SVM cassifier. Expert Syst. Appl. 37, 8019–8026 (2010)

    Article  Google Scholar 

  8. Barschdorff, D., Femmer, U., and Trowitzsch, E.: Automatic phonocardiogram signal analysis in infants based on wavelet transforms and artificial neural networks. In: Computers in Cardiology, pp. 753–756. Vienna, Austria (1995)

    Google Scholar 

  9. Cathers, I.: Neural network assisted cardiac auscultation. Art. Intell. Med. 7, 53–66 (1995)

    Article  Google Scholar 

  10. Chauhan, S., Wang, P., Lim, C.S., Anantharaman, V.: A computer-aided MFCC-based HMM system for automatic auscultation. Comput. Biol. Med. 38(2), 221–233 (2008)

    Article  Google Scholar 

  11. Choi, S.: Detection of valvular heart disorders using wavelet packet decomposition and support vector machine. Expert Syst. Appl. 35(4), 1679–1687 (2008)

    Article  Google Scholar 

  12. Choi, S., Jiang, Z.: Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst. Appl. 34(2), 1056–1069 (2008)

    Article  Google Scholar 

  13. Choi, S., Jiang, Z.: Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique. Comput. Biol. Med. 40(1), 8–20 (2010)

    Article  Google Scholar 

  14. Chung, Y.J. (2008). Using Kullback-Leibler distance in determining the classes for the heart sound signal classification. In: Intelligent Data Engineering and Automated Learning, pp. 49–56. Springer Heidelberg Berlin (2008)

    Google Scholar 

  15. Chung, Y.J.: Classification of continuous heart sound signals using the ergodic hidden Markov model. In: Pattern Recognition and Image Analysis, pp. 563–570. Springer Heidelberg Berlin (2007)

    Google Scholar 

  16. Dokur, Z., Ölmez, T.: Feature determination for heart sounds based on divergence analysis. Digit. Signal Proc. 19(3), 521–531 (2009)

    Article  Google Scholar 

  17. Dokur, Z., Ölmez, T.: Heart sound classification using wavelet transform and incremental self-organizing map. Digit. Signal Proc. 18(6), 951–959 (2008)

    Article  Google Scholar 

  18. Durand, L.G., Pibarot, P.: Digital signal processing of the phonocardiogram: review of the most recent advancements. Crit. Rev. Biomed. Eng. 23, 163–219 (1995)

    Article  Google Scholar 

  19. Feigen, L.P.: Physical characteristics of sound and hearing. Am. J. Cardiol. 28, 130–133 (1971)

    Article  Google Scholar 

  20. Gamero, L.G., Watrous, R.: Detection of the first and second heart sound using probabilistic models. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2877–2880 (2003)

    Google Scholar 

  21. Groch, M.W., Domnanovich, J.R., Erwin, W.D.: A new heart-sounds gating device for medical imaging. IEEE Trans. Biomed. Eng. 39(3), 307–310 (1992)

    Article  Google Scholar 

  22. Gupta, C.N., Palaniappan, R., Swaminathan, S., Krishnan, S.M.: Neural network classification of homomorphic segmented heart sounds. Appl. Soft Comput. 7(1), 286–297 (2007)

    Article  Google Scholar 

  23. Hadi, H.M., Mashor, M.Y., Suboh, M.Z., and Mohamed, M.S.: Classification of heart sound based on S-transform and neural networks. In: Proceedings of International Conference on Information Sciences Signal Processing and their Applications, pp. 189–192. Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  24. Haghighi-Mood, A., Torry, J.N.: A sub-band energy tracking algorithm for heart sound segmentation. In: Computers in Cardiology, pp. 501–504 (1995)

    Google Scholar 

  25. Hanna, I.R., Silverman, M.E.: A history of cardiac auscultation and some of its contributors. Am. J. Cardiol. 90, 259–267 (2002)

    Article  Google Scholar 

  26. Huiying, L., Sakari, L., liro, H.: A heart sound segmentation algorithm using wavelet decomposition and reconstruction. In: Proceedings of 19th International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1630–1633. Chicago, IL (1997)

    Google Scholar 

  27. Iwata, A., Ishii, A.N., Suzumura, N., Ikegaya, K.: Algorithm for detecting the first and the second heart sounds by spectral tracking. Med. Biol. Eng. Comput. 18, 19–26 (1980)

    Article  Google Scholar 

  28. Jiang, Z., Choi, S.: A cardiac sound characteristic waveform method for in-home heart disorder monitoring with electric stethoscope. Expert Syst. Appl. 31(2), 286–298 (2006)

    Article  Google Scholar 

  29. Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80, 187–194 (2005)

    Google Scholar 

  30. Kao, W.C., Wei, C.C.: Automatic phonocardiograph signal analysis for detecting heart valve disorders. Expert Syst. Appl. 38(6), 6458–6468 (2011)

    Article  Google Scholar 

  31. Kumar, D., Carvalho, P., Antunes, M., Henriques, J., Eugenio, L., Schmidt, R., Habetha, J.: Detection of S1 and S2 heart sounds by high frequency signatures. In: Procedings of 28th IEEE Engineering in Medicine and Biology Society Annual International Conference, pp. 1410–1416. New York , USA (2006)

    Google Scholar 

  32. Kumar, D., Carvalho, P., Antunes, M., Henriques, J., SaeMelo, A., Schmidt, R., and Habetha, J.: Third heart sound detection using wavelet transform-simplicity filter. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1277–1281. Lyon, France (2007)

    Google Scholar 

  33. Lehner, R.J., Rangayyan, R.M.: A three-channel microcomputer system for segmentation and characterization of the phonocardiogram. IEEE Trans. Biomed. Eng. 34(6), 485–489 (1987)

    Article  Google Scholar 

  34. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  35. Liang, H., Lukkarinen, S., Hartimo, I.: Heart sound segmentation algorithm based on heart sound envelogram. In: Computers in Cardiology, pp. 105–108 (1997)

    Google Scholar 

  36. Lippmann, R.P.: An introduction to computing with neural nets. IEEE ASSP Mag. 4(2), 4–22 (1987)

    Article  Google Scholar 

  37. Livanos, G., Ranganathan, N., Jiang, J.: Heart sound analysis using the S-transform. In: Computers in Cardiology, pp. 587–590 (2000)

    Google Scholar 

  38. Lukkarinen, S., Noponen, A.L., Sikio, K., Angerla, A.: A new phonocardiographic recording system. In: Computers in Cardiology, pp. 117–120 (1997)

    Google Scholar 

  39. Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A.: Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed. 95, 47–61 (2009)

    Article  Google Scholar 

  40. Malarvili, M.B., Kamarulafizam, I., Hussain, S., and Helmi, D.: Heart sound segmentation algorithm based on instantaneous energy of electrocardiogram. In: Computers in Cardiology, pp. 327–330 (2003)

    Google Scholar 

  41. Mangione, S., Nieman, L.Z.: Cardiac auscultatory skills of internal medicine and family practice trainees. J. Am. Med. Assoc. 278, 717–722 (1997)

    Article  Google Scholar 

  42. Messer, S.R., Agzarian, J., Abbott, D.: Optimal wavelet denoising for phonocardiograms. J. Microelectron. 32, 931–941 (2001)

    Article  Google Scholar 

  43. Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: Comparative study of heart sounds localization. In: Proceedings of SPIE N8068-27, Bioelectronics, Biomedical, and Bioinspired Systems (2011).

    Google Scholar 

  44. Moukadem, A., Dieterlen, A., Hueber, N., and Brandt, C.: Localization of heart sounds based on S-transform and radial basis function neural network. In: IFMBE Proceedings of 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, pp. 168–171 (2011)

    Google Scholar 

  45. Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: A robust heart sounds segmentation module based on S-transform. Biomed. Signal Process. Control 8(3), 273–281 (2013)

    Article  Google Scholar 

  46. Myint, W.W., Dillard, B.: An electronic stethoscope with diagnosis capability. In: Proc.of the 33rd IEEE Southeastern Symposium on System Theory, pp. 133–137. Athens, OH (2001)

    Google Scholar 

  47. Naseri, H., Homaeinezhad, M.R.: Detection and boundary identification of phonocardiogram sounds using an expert frequency-energy based metric. Ann. Biomed. Eng. 41(2), 279–292 (2013)

    Article  Google Scholar 

  48. Nieblas, C.I., Alonso, M.A., Conte, R., Villarreal. S.: High performance heart sound segmentation algorithm based on matching pursuit. In: IEEE Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 96–100. Napa, CA (2013)

    Google Scholar 

  49. Ölmez, T., Dokur, Z.: Classification of heart sounds using an artificial neural network. Pattern Recogn. Lett. 24, 617–629 (2003)

    Article  Google Scholar 

  50. Pasterkamp, H., Kraman, S.S., Wodicka, G.R.: Respiratory sounds: advances beyond the stethoscope. Am. J. Respir. Crit. Care Med., 974–987 (1997)

    Google Scholar 

  51. Patidar, S., Pachori, R.B.: Constrained tunable-Q wavelet transform based analysis of cardiac sound signals. AASRI Procedia 4, 57–63 (2013)

    Article  Google Scholar 

  52. Patidar, S., Pachori, R.B.: Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform. Biomed. Signal Process. Control 8(6), 559–567 (2013)

    Article  Google Scholar 

  53. Patidar, S., Pachori, R.B.: A continuous wavelet transform based method for detecting heart valve disorders using phonocardiograph signals. In: International Conference on Convergence and Hybrid Information Technology, pp. 513–520. Daejeon, Korea (2012)

    Google Scholar 

  54. Pease A.: If the heart could speak. Pictures Future, pp. 60–61 (2001)

    Google Scholar 

  55. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci., 2297–2301 (1991)

    Google Scholar 

  56. Rajan, S., Doraiswami, R., Stevenson, R., and Watrous, R.: Wavelet based bank of correlators approach for phonocardiogram signal classification. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, pp. 77–80. Pittsburgh, PA (1998)

    Google Scholar 

  57. Rangayyan, R.M., Lehner, R.J.: Phonocardiogram signal analysis: a review. Crit. Rev. Biomed. Eng. 15(3), 211–236 (1986)

    Google Scholar 

  58. Reed, T., Reed, N., and Fritzson, P.: Analysis of heart sounds for symptom detection and machine-aided diagnosis. In: 2nd Conference Modeling and Simulation in Biology, Medicine, and Biomedical Engineering, pp. 1–6. Delft, The Netherlands (2001)

    Google Scholar 

  59. Reed, T.R., Reed, N.E., Fritzson, P.: Heart sound analysis for symptom detection and computer-aided diagnosis. Simul. Model. Pract. Theory 12, 129–146 (2004)

    Article  Google Scholar 

  60. Rumelhart, D.E., McClelland, J.L.: Parallel distributed processing: Explorations in the Microstructure of Cognition: Foundations. MIT Press, Cambridge, MA (1986)

    Google Scholar 

  61. Sabeti, M., Katebi, S., Boostani, R.: Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artif. Intell. Med. 47, 263–274 (2009)

    Article  Google Scholar 

  62. Sanei, S., Ghodsi, M., Hassani, H.: An adaptive singular spectrum analysis approach to murmur detection from heart sounds. Med. Eng. Phys. 33(3), 362–367 (2011)

    Article  Google Scholar 

  63. Schmidt, S.E., Holst-Hansen, C., Graff, C., Toft, E., Struijk, J.J.: Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol. Meas. 31(4), 513–529 (2010)

    Article  Google Scholar 

  64. Sejdic, E., Jiang, J.: Comparative study of three time-frequency representations with applications to a novel correlation method. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 633–636 (2004)

    Google Scholar 

  65. Selesnick, I.W.: Wavelet transform with tunable Q-factor. IEEE Trans. Signal Process. 59(8), 3560–3575 (2011)

    Article  MathSciNet  Google Scholar 

  66. Sepehri, A.A., Gharehbaghi, A., Dutoit, T., Kocharian, A., Kiani, A.: A novel method for pediatric heart sound segmentation without using the ECG. Comput. Methods Programs Biomed. 99, 43–48 (2010)

    Article  Google Scholar 

  67. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Champaign (1963)

    Google Scholar 

  68. Shino, H., Yoshida, H., Yana, K., Harada, K. Sudoh, J., Harasewa, E.: Detection and classification of systolic murmur for phonocardiogram screening. In: Proceedings of 18th International Conference of the IEEE Engineering in Medical and Biology Society, pp. 123–124 (1996)

    Google Scholar 

  69. Sun, S., Jiang, Z., Wang, H., Fang, Y.: Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput. Methods Programs Biomed. 114 (3), 219-230 (2014)

    Google Scholar 

  70. Sun, S., Wang, H., Jiang, Z., Fang, Y., Tao, T.: Segmentation-based heart sound feature extraction combined with classifier models for a VSD diagnosis system. Expert Syst. Appl. 41 (4), 1769–1780 (2014)

    Google Scholar 

  71. Syed, Z., Leeds, D., Curtis, D., Nesta, F., Levine, R.A., Guttag, J.: A framework for the analysis of acoustical cardiac signals. IEEE Trans. Biomed. Eng. 54(4), 651–662 (2007)

    Article  Google Scholar 

  72. Tang, H., Li, T., Qiu, T., Park, Y.: Segmentation of heart sounds based on dynamic clustering. Biomed. Signal Process. Control 7(5), 509–516 (2012)

    Article  Google Scholar 

  73. Thompson, W.R., Hayek, C.S., Tuchinda, C., Telford, J.K., Lombardo, J.S.: Automated cardiac auscultation for detection of pathologic heart murmurs, Pediatr. Cardiol, 373–379 (2001)

    Google Scholar 

  74. Tseng, Y.L., Ko, P.Y., Jaw, F.S.: Detection of the third and fourth heart sounds using Hilbert-Huang transform. BioMed. Eng. OnLine 11(8), 1–13 (2012)

    Google Scholar 

  75. Vepa, J., Tolay, P., Jain, A.: Segmentation of heart sounds using simplicity features and timing information. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 469–472 (2008)

    Google Scholar 

  76. Wang, P., Lim, C.S., Chauhan, S., Foo, J.Y.A., Anantharaman, V.: Phonocardiographic signal analysis method using a modified hidden Markov model. Ann. Biomed. Eng. 35(3), 367–374 (2007)

    Article  MATH  Google Scholar 

  77. Watrous, R.L.: Computer-Aided auscultation of the heart: From anatomy and physiology to diagnostic decision support. In: Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 140–143. New York, USA (2006)

    Google Scholar 

  78. Yan, Z., Jiang, Z., Miyamoto, A., Wei, Y.: The moment segmentation analysis of heart sound pattern. Comput. Methods Programs Biomed. 98, 140–150 (2010)

    Article  Google Scholar 

  79. Yuan, J., He, Z., Zi, Y.: Gear fault detection using customized multiwavelet lifting schemes. Mech. Syst. Signal Process. 24(5), 1509–1528 (2010)

    Article  Google Scholar 

  80. Yuenyong, S., Nishihara, A., Kongprawechnon, W., Tungpimolrut, K.: A framework for automatic heart sound analysis without segmentation. BioMed. Eng. Online 10, 01-23 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Niranjan Garg, Cardiologist, Department of Cardiology, RD Gardi Medical College, Ujjain, India for his valuable clinical suggestions and discussions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilas Pachori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patidar, S., Pachori, R.B. (2015). Classification of Heart Disorders Based on Tunable-Q Wavelet Transform of Cardiac Sound Signals. In: Azar, A., Vaidyanathan, S. (eds) Chaos Modeling and Control Systems Design. Studies in Computational Intelligence, vol 581. Springer, Cham. https://doi.org/10.1007/978-3-319-13132-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13132-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13131-3

  • Online ISBN: 978-3-319-13132-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics