Boronic Acid-Catalyzed Reactions of Carboxylic Acids

Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 49)


Although boric acid (B(OH)3) and boronic acids (RB(OH)2) behave as oligomeric mixtures, these boron compounds, as well as borane, electrophilically activate carboxylic acids as a mixed anhydride under equilibrium. In particular, electron-deficient arylboronic acids are useful as Lewis or Brønsted acid catalysts. The pK a of boronic acids is in the range of 5–9, which is significantly higher than that of the strong protic acids. However, diortho-substituted arylboronic acids with electron-withdrawing groups are unstable and are easily decomposed by base-promoted protodeboronation. In this chapter, the main emphasis is upon the recent progress on boronic acid-catalyzed reactions of carboxylic acids, as well as a few other reactions which can be catalyzed by boronic acids.


(Acyloxy)boron Amidation Boronic acid Brønsted acid Catalyst Dehydrative condensation Esterification Lewis acid 


  1. 1.
    Brown HC, Stocky TP (1977) J Am Chem Soc 99:8218CrossRefGoogle Scholar
  2. 2.
    Brown HC, Stocky TP (1987) J Am Chem Soc 52:3925Google Scholar
  3. 3.
    Kato K, Furuta K, Yamamoto H (1992) Synlett 565Google Scholar
  4. 4.
    Hall DG (ed) (2011) Boronic acids–preparation and applications in organic synthesis medicine and materials, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  5. 5.
    Lozada J, Liu Z, Perrin DM (2014) J Org Chem 79:5365CrossRefGoogle Scholar
  6. 6.
    Ishihara K (2009) Tetrahedron 65:1085CrossRefGoogle Scholar
  7. 7.
    Zheng H, Hall DG (2014) Aldrichmica Acta 47:41Google Scholar
  8. 8.
    Furuta K, Miwa Y, Iwanaga K, Yamamoto H (1988) J Am Chem Soc 110:6254CrossRefGoogle Scholar
  9. 9.
    Ishihara K, Gao Q, Yamamoto H (1993) J Am Chem Soc 115:10412CrossRefGoogle Scholar
  10. 10.
    Al-Zoubi RM, Marion O, Hall DG (2008) Angew Chem Int Ed 47:2876CrossRefGoogle Scholar
  11. 11.
    Zheng H, Hall DG (2010) Tetrahedron Lett 51:3561CrossRefGoogle Scholar
  12. 12.
    Gernigon N, Al-Zoubi RM, Hall DG (2012) J Org Chem 77:8386CrossRefGoogle Scholar
  13. 13.
    Azuma T, Murata A, Kobayashi Y, Inokuma T, Takemoto Y (2014) Org Lett 16:4256CrossRefGoogle Scholar
  14. 14.
    Mitchell JA, Reid EE (1931) J Am Chem Soc 53:1879CrossRefGoogle Scholar
  15. 15.
    Jursie BS, Zdravkovski Z (1993) Synth Commun 23:2761CrossRefGoogle Scholar
  16. 16.
    Charville H, Jackson DA, Hodges G, Whiting A, Wilson MR (2011) Eur J Org Chem 5981Google Scholar
  17. 17.
    Allen CL, Chhatwal AR, Williams JMJ (2012) Chem Commun 48:666CrossRefGoogle Scholar
  18. 18.
    Perreux L, Loupy A, Volatron F (2002) Tetrahedron 58:2155CrossRefGoogle Scholar
  19. 19.
    Pelter A, Levitt TE, Nelson P (1970) Tetrahedron 26:1539CrossRefGoogle Scholar
  20. 20.
    Trapani G, Reho A, Latrofa A (1983) Synthesis 1013Google Scholar
  21. 21.
    Tani J, Oine T, Inoue I (1975) Synthesis 714Google Scholar
  22. 22.
    Collum DB, Chen S, Ganem B (1978) J Org Chem 43:4393CrossRefGoogle Scholar
  23. 23.
    Ishihara K, Ohara S, Yamamoto H (1996) J Org Chem 61:4196CrossRefGoogle Scholar
  24. 24.
    Ishihara K, Ohara S, Yamamoto H (2000) Macromolecules 33:3511CrossRefGoogle Scholar
  25. 25.
    Ishihara K, Ohara S, Yamamoto H (2002) Org Synth 79:176CrossRefGoogle Scholar
  26. 26.
    Maki T, Ishihara K, Yamamoto H (2004) Synlett 1355Google Scholar
  27. 27.
    Ishihara K, Kondo S, Yamamoto H (2001) Synlett 1371Google Scholar
  28. 28.
    Wipf P, Wang X (2002) J Comb Chem 4:656CrossRefGoogle Scholar
  29. 29.
    Liu S, Yang Y, Liu X, Ferdousi FK, Batsanov AS, Whiting A (2013) Eur J Org Chem 5692Google Scholar
  30. 30.
    Ohara S, Ishihara K, Yamamoto H (2000) The 78th spring meeting of chemical society of Japan, 3-B5-10Google Scholar
  31. 31.
    Ishihara K, Yamamoto H, Japan Kokai Tokkyo Koho JP 2001-270939 (2001-10-02), Application: JP 2000-87495 (2000-03-27)Google Scholar
  32. 32.
    Maki T, Ishihara K, Yamamoto H (2005) Org Lett 7:5043CrossRefGoogle Scholar
  33. 33.
    Latta R, Springsteen G, Wang B (2001) Synthesis 1611Google Scholar
  34. 34.
    Gu L, Lim J, Cheong JL, Lee SS (2014) Chem Commun 50:7017CrossRefGoogle Scholar
  35. 35.
    Yang W, Gao X, Springsteen G, Wang B (2002) Tetrahedron Lett 43:6339CrossRefGoogle Scholar
  36. 36.
    Lanigan RM, Starkov P, Sheppard TD (2013) J Org Chem 78:4512CrossRefGoogle Scholar
  37. 37.
    Maki T, Ishihara K, Yamamoto H (2006) Org Lett 8:1431CrossRefGoogle Scholar
  38. 38.
    Tang P (2005) Org Synth 81:262CrossRefGoogle Scholar
  39. 39.
    Mylavarapu RK, Kondaiah GCM, Kolla N, Veeramalla R, Koilkonda P, Bhattacharya A, Bandichhor R (2007) Org Process Res Dev 11:1065CrossRefGoogle Scholar
  40. 40.
    Marcelli T (2010) Angew Chem Int Ed 49:6840CrossRefGoogle Scholar
  41. 41.
    Wang C, Yu H-Z, Fu Y, Guo Q-X (2013) Org Biomol Chem 11:2140CrossRefGoogle Scholar
  42. 42.
    Arnold K, Davies B, Giles RL, Grosjean C, Smith GE, Whiting A (2007) Adv Synth Catal 348:813CrossRefGoogle Scholar
  43. 43.
    Arnold K, Davies B, Hérault D, Whiting A (2008) Angew Chem Int Ed 47:2673CrossRefGoogle Scholar
  44. 44.
    Yamashita R, Sakakura A, Ishihara K (2013) Org Lett 15:3654CrossRefGoogle Scholar
  45. 45.
    Maki T, Ishihara K, Yamamoto H (2005) Org Lett 7:5047CrossRefGoogle Scholar
  46. 46.
    Houston TA, Wilkinson BL, Blanchfield JT (2004) Org Lett 6:679CrossRefGoogle Scholar
  47. 47.
    Maki T, Ishihara K, Yamamoto H (2007) Tetrahedron 63:8645CrossRefGoogle Scholar
  48. 48.
    Sakakura A, Ohkubo T, Yamashita R, Akakura M, Ishihara K (2011) Org Lett 13:892CrossRefGoogle Scholar
  49. 49.
    Sakakura A, Yamashita R, Ohkubo T, Akakura M, Ishihara K (2011) Aust J Chem 64:1458CrossRefGoogle Scholar
  50. 50.
    Rao G, Philipp M (1991) J Org Chem 13:892Google Scholar
  51. 51.
    Hu X-D, Fan C-A, Zhang F-M, Tu Y-Q (2004) Angew Chem Int Ed 43:1702CrossRefGoogle Scholar
  52. 52.
    Debache A, Boumoud B, Amimour M, Belfaitah A, Rhousati S, Carboni B (2006) Tetrahedron Lett 47:5697CrossRefGoogle Scholar
  53. 53.
    Zheng R, McDonald R, Hall DG (2010) Chem Eur J 16:5454CrossRefGoogle Scholar
  54. 54.
    Aelvoet K, Batsanov AS, Blatch AJ, Grosjean C, Patrick LGF, Smethurst CA, Whiting A (2008) Angew Chem Int Ed 47:768CrossRefGoogle Scholar
  55. 55.
    Li M, Yang T, Dixon DJ (2010) Chem Commun 46:2191CrossRefGoogle Scholar
  56. 56.
    McCubbin JA, Hosseini H, Krokhin OV (2010) J Org Chem 75:959CrossRefGoogle Scholar
  57. 57.
    McCubbin JA, Krokhin OV (2010) Tetrahedron Lett 51:2447CrossRefGoogle Scholar
  58. 58.
    Zheng H, Lejkowski M, Hall DG (2011) Chem Sci 2:1305CrossRefGoogle Scholar
  59. 59.
    Zheng H, Ghanbari S, Nakamura S, Hall DG (2012) Angew Chem Int Ed 51:6187CrossRefGoogle Scholar
  60. 60.
    Yang Y-D, Lu X, Tokunaga E, Shibata N (2012) J Fluorine Chem 204Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Nagoya UniversityNagoyaJapan

Personalised recommendations