Advertisement

Improving Transformations Through Organotrifluoroborates

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 49)

Abstract

Organotrifluoroborates have emerged as choice reagents for a number of diverse transformations, providing reactivity patterns that complement those of other available organoboron reagents. Over the last several years, numerous potassium organotrifluoroborates have become commercially available owing to their long shelf-lives. As a result of this and their unique reactivity patterns, a significant amount of progress has been made in the synthesis and utilization of organotrifluoroborate salts in organic transformations.

Keywords

Cross-coupling Heteroatom conversion Organotrifluoroborates 

References

  1. 1.
    Lennox AJJ, Lloyd-Jones GC (2014) Chem Soc Rev 43:412Google Scholar
  2. 2.
    Darses S, Genet JP (2008) Chem Rev 108:288Google Scholar
  3. 3.
    Molander GA, Ellis N (2007) Acc Chem Res 40:275Google Scholar
  4. 4.
    Doucet H (2008) Eur J Org Chem 2013Google Scholar
  5. 5.
    Stefani HA, Cella R, Vieira AS (2007) Tetrahedron 63:3623Google Scholar
  6. 6.
    Molander GA, Sandrock DL (2009) Curr Opin Drug Discov Devel 12:811Google Scholar
  7. 7.
    Vedejs E, Chapman RW, Fields SC, Lin S, Schrimpf MR (1995) J Org Chem 60:3020Google Scholar
  8. 8.
    Lennox AJJ, Lloyd-Jones GC (2012) Angew Chem Int Ed 51:9385Google Scholar
  9. 9.
    Molander GA, Trice SLJ, Dreher SD (2010) J Am Chem Soc 132:17701Google Scholar
  10. 10.
    Molander GA, Trice SLJ, Kennedy SM, Dreher SD, Tudge MT (2012) J Am Chem Soc 134:11667Google Scholar
  11. 11.
    Molander GA, Cavalcanti LN, Garcia-Garcia C (2013) J Org Chem 78:6427Google Scholar
  12. 12.
    Chen H, Schlecht S, Sample TC, Hartwig JF (2000) Science 287:1995Google Scholar
  13. 13.
    Lawrence JD, Takahashi M, Bae C, Hartwig JF (2004) J Am Chem Soc 126:15334Google Scholar
  14. 14.
    Murphy JM, Lawrence JD, Kawamura K, Incarvito C, Hartwig JF (2006) J Am Chem Soc 128:13684Google Scholar
  15. 15.
    Murphy JM, Tzschucke CC, Hartwig JF (2007) Org Lett 9:757Google Scholar
  16. 16.
    Liskey CW, Hartwig JF (2012) J Am Chem Soc 134:12422Google Scholar
  17. 17.
    Liskey CW, Hartwig JF (2013) J Am Chem Soc 135:3375Google Scholar
  18. 18.
    Tobisu M, Chatani N (2009) Angew Chem Int Ed 48:3565Google Scholar
  19. 19.
    Molander GA, Sandrock DL (2008) J Am Chem Soc 130:15792Google Scholar
  20. 20.
    Molander GA, Sandrock DL (2009) Org Lett 11:2369Google Scholar
  21. 21.
    Molander GA, Jean-Gérard L (2013) Org Reactions 79:1Google Scholar
  22. 22.
    Molander GA, Ham J (2006) Org Lett 8:2031Google Scholar
  23. 23.
    Broom T, Hughes M, Szczepankiewicz BG, Ace K, Hagger B, Lacking G, Chima R, Marchbank G, Alford G, Evans P, Cunningham C, Roberts JC, Perni RB, Berry M, Rutter A, Watson SA (2013) Org Process Res Dev. doi: 10.1021/op400090a Google Scholar
  24. 24.
    Molander GA, Shin I (2011) Org Lett 13:3956Google Scholar
  25. 25.
    Molander GA, Ryu D, Hosseini-Sarvari M, Devulapally R, Seapy DG (2013) J Org Chem 78:6648Google Scholar
  26. 26.
    Fleury-Brégeot N, Raushel J, Sandrock DL, Dreher SD, Molander GA (2012) Chem Eur J 18:9564Google Scholar
  27. 27.
    Molander GA, Fleury-Brégeot N, Hiebel M-A (2011) Org Lett 13:1694Google Scholar
  28. 28.
    Molander GA, Canturk B (2008) Org Lett 10:2135Google Scholar
  29. 29.
    Kalinin AV, Scherer S, Snieckus V (2003) Angew Chem Int Ed 42:3399Google Scholar
  30. 30.
    Kamatani A, Overman LE (1999) J Org Chem 64:8743Google Scholar
  31. 31.
    Molander GA, Vargas F (2007) Org Lett 9:203Google Scholar
  32. 32.
    Molander GA, Jean-Gérard L (2007) J Org Chem 72:8422Google Scholar
  33. 33.
    Tallman RC (1934) J Am Chem Soc 56:126Google Scholar
  34. 34.
    Hawthorne MF, Dupont JA (1958) J Am Chem Soc 80:5830Google Scholar
  35. 35.
    Matteson DS, Liedtke JD (1963) J Org Chem 28:1924Google Scholar
  36. 36.
    Matteson DS, Peacock K (1964) J Organomet Chem 2:190Google Scholar
  37. 37.
    Fleury-Brégeot N, Presset M, Beaumard F, Colombel V, Oehlrich D, Rombouts F, Molander GA (2012) J Org Chem 77:10399Google Scholar
  38. 38.
    Fleury-Brégeot N, Oehlrich D, Rombouts F, Molander GA (2013) Org Lett 15:1536Google Scholar
  39. 39.
    Matteson DS (1960) J Am Chem Soc 82:4228Google Scholar
  40. 40.
    Hunt AR, Stewart SK, Whiting A (1993) Tetrahedron Lett 34:3599Google Scholar
  41. 41.
    Lightfoot AP, Twiddle SJR, Whiting A (2005) Synlett 529–531Google Scholar
  42. 42.
    Molander GA, Rodríguez Rivero M (2002) Org Lett 4:107Google Scholar
  43. 43.
    Molander GA, Bernardi CR (2002) J Org Chem 67:8424Google Scholar
  44. 44.
    Molander GA, Brown AR (2006) J Org Chem 71:9681Google Scholar
  45. 45.
    Arvela RK, Leadbeater NE, Mack TL, Kormos CM (2006) Tetrahedron Lett 47:217Google Scholar
  46. 46.
    Alacid E, Najera C (2009) J Org Chem 74:2321Google Scholar
  47. 47.
    Patai S, Rappoport Z (eds) (1987) The chemistry of the cyclopropyl group. Wiley, New YorkGoogle Scholar
  48. 48.
    Patai S, Rappoport Z (2006) The chemistry of cyclobutanes. Wiley, New YorkGoogle Scholar
  49. 49.
    Knapp DM, Gillis EP, Burke MD (2009) J Am Chem Soc 131:6961Google Scholar
  50. 50.
    Jana R, Pathak TP, Sigman MS (2011) Chem Rev 111:1417Google Scholar
  51. 51.
    Molander GA, Gormisky PE (2008) J Org Chem 73:7481Google Scholar
  52. 52.
    Molander GA, Beaumard F, Niethamer TK (2011) J Org Chem 76:8126Google Scholar
  53. 53.
    Purser S, Moore PR, Swallow S, Gouverneur V (2008) Chem Soc Rev 37:320Google Scholar
  54. 54.
    Xu J, Luo DF, Liu ZJ, Gong TJ, Fu Y, Liu L (2011) Chem Commun 47:4300Google Scholar
  55. 55.
    Zhang CP, Cai J, Zhou CB, Wang XP, Zheng X, Gu YC, Xiao JC (2011) Chem Commun 47:9516Google Scholar
  56. 56.
    Liu T, Shen Q (2011) Org Lett 13:2342Google Scholar
  57. 57.
    Chu L, Qing FL (2010) Org Lett 12:5060Google Scholar
  58. 58.
    Senecal TD, Parsons AT, Buchwald SL (2011) J Org Chem 76:1174Google Scholar
  59. 59.
    Ye Y, Kunzi SA, Sanford MS (2012) Org Lett 14:4979Google Scholar
  60. 60.
    Liu T, Shao X, Wu Y, Shen Q (2012) Angew Chem Int Ed 51:540Google Scholar
  61. 61.
    Huang Y, Fang X, Lin X, Li H, He W, Huang KW, Yuan Y, Weng Z (2012) Tetrahedron 68:9949Google Scholar
  62. 62.
    Li Y, Wu L, Neumann H, Beller M (2013) Chem Commun 49:2628Google Scholar
  63. 63.
    Presset M, Oehlrich D, Rombouts F, Molander GA (2013) J Org Chem 78:12837Google Scholar
  64. 64.
    Argintaru OA, Ryu D, Aron I, Molander GA (2013) Angew Chem Int Ed 52:13656Google Scholar
  65. 65.
    Wasa M, Chan KSL, Yu JQ (2011) Chem Lett 40:1004Google Scholar
  66. 66.
    Thuy-Boun PS, Villa G, Dang D, Richardson P, Su S, Yu JQ (2013) J Am Chem Soc 135:17508Google Scholar
  67. 67.
    Presset M, Oehlrich D, Rombouts F, Molander GA (2013) Org Lett 15:1528Google Scholar
  68. 68.
    Hamilton JY, Sarlah D, Carreira EM (2013) J Am Chem Soc 135:994Google Scholar
  69. 69.
    Gendrineau T, Genet JP, Darses S (2009) Org Lett 11:3486Google Scholar
  70. 70.
    Stymiest JL, Dutheuil G, Mahmood A, Aggarwal VK (2007) Angew Chem Int Ed 46:7491Google Scholar
  71. 71.
    Stymiest JL, Bagutski V, French RM, Aggarwal VK (2008) Nature 456:778Google Scholar
  72. 72.
    Ros A, Aggarwal VK (2009) Angew Chem Int Ed 48:6289Google Scholar
  73. 73.
    Molander GA, Wisniewski SR (2012) J Am Chem Soc 134:16856Google Scholar
  74. 74.
    Zhao H, Dang L, Marder TB, Lin Z (2008) J Am Chem Soc 128:11036Google Scholar
  75. 75.
    Sandrock DL, Jean-Gerard L, Chen C, Dreher SD, Molander GA (2010) J Am Chem Soc 132:17108Google Scholar
  76. 76.
    Sorin G, Martinez Mallorquin R, Contie Y, Baralle A, Malacria M, Goddard JP, Fensterbank L (2010) Angew Chem Int Ed 49:8721Google Scholar
  77. 77.
    Molander GA, Colombel V, Braz VA (2011) Org Lett 13:1852Google Scholar
  78. 78.
    Presset M, Fleury-Brégeot N, Oehlrich D, Rombouts F, Molander GA (2013) J Org Chem 78:4615Google Scholar
  79. 79.
    Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Del Bel M, Baran PS (2011) J Am Chem Soc 133:3292Google Scholar
  80. 80.
    Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS (2010) J Am Chem Soc 132:13194Google Scholar
  81. 81.
    Lockner JW, Dixon DD, Risgaard R, Baran PS (2011) Org Lett 13:5628Google Scholar
  82. 82.
    Koike T, Akita M (2013) Synlett 24:2492Google Scholar
  83. 83.
    Yasu Y, Koike T, Akita M (2012) Adv Synth Catal 354:3414Google Scholar
  84. 84.
    Miyazawa K, Yasu Y, Koike T, Akita M (2013) Chem Commun 49:7249Google Scholar
  85. 85.
    Tellis JC, Primer DN, Molander GA (2014) Science 345:433Google Scholar
  86. 86.
    Yasu Y, Koike T, Akita M (2013) Chem Commun 49:2037Google Scholar
  87. 87.
    Parsons AT, Senecal TD, Buchwald SL (2012) Angew Chem Int Ed 51:2947Google Scholar
  88. 88.
    Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y (2010) Org Lett 12:1964Google Scholar
  89. 89.
    Molander GA, Cavalcanti LN (2011) J Org Chem 76:623Google Scholar
  90. 90.
    Dumas AM, Bode JW (2012) Org Lett 14:2138Google Scholar
  91. 91.
    Molander GA, Raushel J, Ellis NM (2010) J Org Chem 75:4304Google Scholar
  92. 92.
    Dumas AM, Molander GA, Bode JW (2012) Angew Chem Int Ed 51:5683Google Scholar
  93. 93.
    Gowenlock BG, Richter-Addo GB (2004) Chem Rev 104:3315Google Scholar
  94. 94.
    Zhao D, Johansson M, Backvall JE (2007) Eur J Org Chem 4431Google Scholar
  95. 95.
    Bordoloi A, Halligudi SB (2007) Adv Synth Catal 2085Google Scholar
  96. 96.
    Bosch E, Kochi JK (1994) J Org Chem 59:5573Google Scholar
  97. 97.
    Atherton JH, Moodie RB, Noble R (1999) J Chem Soc Perkin Trans 2 699Google Scholar
  98. 98.
    D’Amicoc JJ, Tung CC, Walker LA (1959) J Am Chem Soc 81:5957Google Scholar
  99. 99.
    Molander GA, Cavalcanti LN (2012) J Org Chem 77:4402Google Scholar
  100. 100.
    Liesen AP, Silva AT, Sousa JC, Menezes PH, Oliveira RA (2012) Tetrahedron Lett 53:4240Google Scholar
  101. 101.
    Berionni G, Morozova V, Heininger M, Mayer P, Knochel P, Mayr H (2013) J Am Chem Soc 135:6317Google Scholar
  102. 102.
    Molander GA, Cavalcanti LN (2011) J Org Chem 76:7195Google Scholar
  103. 103.
    Hagmann WK (2008) J Med Chem 51:4359Google Scholar
  104. 104.
    Jeschke P (2010) Pest Manag Sci 66:10Google Scholar
  105. 105.
    Ye Y, Sanford MS (2013) J Am Chem Soc 135:4648Google Scholar
  106. 106.
    Ye Y, Schimler SD, Hanley PS, Sanford MS (2013) J Am Chem Soc 135:16292Google Scholar
  107. 107.
    Molander GA, Cavalcanti LN, Canturk B, Pan P-S, Kennedy LE (2009) J Org Chem 74:7364Google Scholar
  108. 108.
    Kabalka GW, Coltuclu V (2009) Tetrahedron Lett 50:6271Google Scholar
  109. 109.
    Blevins DW, Yao M-L, Yong L, Kabalka GW (2011) Tetrahedron Lett 52:6534Google Scholar
  110. 110.
    Kim BJ, Matteson DS (2004) Angew Chem Int Ed 43:3056Google Scholar
  111. 111.
    Liu Z, Marder TB (2008) Angew Chem Int Ed 47:242Google Scholar
  112. 112.
    Campbell PG, Marwitz AJV, Liu SY (2012) Angew Chem Int Ed 51:6074Google Scholar
  113. 113.
    Bosdet MJD, Piers WE (2009) Can J Chem 87:8Google Scholar
  114. 114.
    Wisniewski SR, Guenther CL, Argintaru OA, Molander GA (2014) J Org Chem 79:365Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Roy and Diana Vagelos Laboratories, Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations