Advertisement

Recent Advances in the Synthesis and Applications of Organoborane Polymers

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 49)

Abstract

Recent advances in the synthesis of organoborane polymers are reviewed in this chapter. The last decade has witnessed new approaches for the direct polymerization of functional borane monomers as well as the use of innovative polymer modification techniques. Powerful new methods that allow for positioning of functional borane moieties at well-defined positions in the polymer chain have also been developed. The resulting organoborane polymers have been investigated as luminescent and electro-active materials, electrolytes for batteries, supported Lewis acid catalysts, sensors for anions and biologically relevant molecules, building blocks of stimuli-responsive and dynamic (supramolecular) materials, and for biomedical applications.

Keywords

Boron Lewis acids Luminescence Organoborane Polyelectrolytes Polymerization Sensors 

Abbreviations

9-BBN

9-Borabicyclononane

AIBN

Azobisisobutyronitrile

Alq3

Aluminum tris(8-hydroxyquinolate)

Ar

Aryl

ATRP

Atom transfer radical polymerization

COD

1,5-Cyclooctadiene

Cp

Cyclopentadienyl

Cp*

Pentamethylcyclopentadienyl

CTA

Chain transfer agent

DLS

Dynamic light scattering

dppb

Bis(diphenylphosphino)butane

dppp

Bis(diphenylphosphino)propane

dtbpy

4,4′-Di-t-butyl-2,2′-bipyridine

Fc

Ferrocenyl or ferrocenediyl

Hex

n-Hexyl

LCST

Lower critical solution temperature

LLDPE

Linear low-density polyethylene

Mes

Mesityl (2,4,6-trimethylphenyl)

NIR

Near infrared

NMP

Nitroxide-mediated polymerization

OLED

Organic light emitting device

PCL

Poly(ε-caprolactone)

PDMA

Poly(N,N-dimethylacrylamide)

PEG

Polyethylene glycol

PEO

Polyethylene oxide

pin

Pinacolato

PLA

Poly(lactic acid)

PMDETA

N,N,N′,N″,N″-Pentamethyldiethylenetriamine

PNIPAM

Poly(N-isopropylacrylamide)

PS

Polystyrene

PSBA

Polystyrene boronic acid

R

Organic substituent

RAFT

Reversible addition–fragmentation chain transfer

ROMP

Ring-opening metathesis polymerization

St

Styrene or styryl

TEM

Transmission electron microscopy

Tg

Glass transition temperature

Tip

Tripyl (2,4,6-tri-iso-propylphenyl)

TMS

Trimethylsilyl

UCST

Upper critical solution temperature

UV

Ultraviolet

Notes

Acknowledgments

The author thanks the National Science Foundation (NSF CHE-0956655, 1112195, 1308517, and 1362460) for the generous financial support. He is also indebted to all of his students and collaborators for their contributions to the work discussed in here.

References

  1. 1.
    Abd-El-Aziz AS, Carraher CE Jr, Pittman CU Jr, Zeldin M (eds) (2007) Macromolecules containing metal and metal-like elements: boron-containing polymers, vol 8. Wiley, HobokenGoogle Scholar
  2. 2.
    He X, Baumgartner T (2013) RSC Adv 3:11334–11350Google Scholar
  3. 3.
    Jäkle F (2005) J Inorg Organomet Polym Mater 15:293–307Google Scholar
  4. 4.
    Entwistle CD, Marder TB (2004) Chem Mater 16:4574–4585Google Scholar
  5. 5.
    Matsumi N, Chujo Y (2008) Polym J 40:77–89Google Scholar
  6. 6.
    Elbing M, Bazan GC (2008) Angew Chem Int Ed 47:834–838Google Scholar
  7. 7.
    Jäkle F (2010) Chem Rev 110:3985–4022Google Scholar
  8. 8.
    Lorbach A, Hubner A, Wagner M (2012) Dalton Trans 41:6048–6063Google Scholar
  9. 9.
    Tanaka K, Chujo Y (2012) Macromol Rapid Commun 33:1235–1255Google Scholar
  10. 10.
    Matsumi N, Ohno H (2007) Organoboron polymer electrolytes for selective lithium cation transport. In: Macromolecules containing metal and metal-like elements, vol 8, pp 175–196Google Scholar
  11. 11.
    Jäkle F (2006) Coord Chem Rev 250:1107–1121Google Scholar
  12. 12.
    Cambre JN, Sumerlin BS (2011) Polymer 52:4631–4643Google Scholar
  13. 13.
    Cheng F, Jäkle F (2011) Polym Chem 2:2122–2132Google Scholar
  14. 14.
    Staubitz A, Robertson APM, Sloan ME, Manners I (2010) Chem Rev 110:4023–4078Google Scholar
  15. 15.
    Armitage P, Ebdon JR, Hunt BJ, Jones MS, Thorpe FG (1996) Polym Degrad Stab 54:387–393Google Scholar
  16. 16.
    Caze C, Moualij NE, Hodge P, Lock CJ, Ma J (1995) J Chem Soc Perkin Trans 1 345–349Google Scholar
  17. 17.
    Ramakrishnan S (1991) Macromolecules 24:3753–3759Google Scholar
  18. 18.
    Chung TC, Lu HL, Li CL (1994) Macromolecules 27:7533–7537Google Scholar
  19. 19.
    Paetzold P, Hoffmann J (1980) Chem Ber 113:3724–3733Google Scholar
  20. 20.
    Kondo Y, García-Cuadrado D, Hartwig JF, Boaen NK, Wagner NL, Hillmyer MA (2002) J Am Chem Soc 124:1164–1165Google Scholar
  21. 21.
    Bae C, Hartwig JF, Harris NKB, Long RO, Anderson KS, Hillmyer MA (2005) J Am Chem Soc 127:767–776Google Scholar
  22. 22.
    Bae C, Hartwig JF, Chung H, Harris NK, Switek KA, Hillmyer MA (2005) Angew Chem Int Ed 44:6410–6413Google Scholar
  23. 23.
    Shin J, Chang AY, Brownell LV, Racoma IO, Ozawa CH, Chung H-Y, Peng S, Bae C (2008) J Polym Sci A Polym Chem 46:3533–3545Google Scholar
  24. 24.
    Shin J, Jensen SM, Ju J, Lee S, Xue Z, Noh SK, Bae C (2007) Macromolecules 40:8600–8608Google Scholar
  25. 25.
    Qin Y, Cheng G, Sundararaman A, Jäkle F (2002) J Am Chem Soc 124:12672–12673Google Scholar
  26. 26.
    Qin Y, Cheng G, Achara O, Parab K, Jäkle F (2004) Macromolecules 37:7123–7131Google Scholar
  27. 27.
    Matyjaszewski K, Xia J (2001) Chem Rev 101:2921–2990Google Scholar
  28. 28.
    Doshi A, Jäkle F (2006) Main Group Chem 5:309–318Google Scholar
  29. 29.
    Parab K, Venkatasubbaiah K, Jäkle F (2006) J Am Chem Soc 128:12879–12885Google Scholar
  30. 30.
    Parab K, Jäkle F (2009) Macromolecules 42:4002–4007Google Scholar
  31. 31.
    Parab K, Doshi A, Cheng F, Jäkle F (2011) Macromolecules 44:5961–5967Google Scholar
  32. 32.
    Kuhtz H, Cheng F, Schwedler S, Böhling L, Brockhinke A, Weber L, Parab K, Jäkle F (2012) ACS Macro Lett 1:555–559Google Scholar
  33. 33.
    Qin Y, Sukul V, Pagakos D, Cui C, Jäkle F (2005) Macromolecules 38:8987–8990Google Scholar
  34. 34.
    Qin Y, Cui C, Jäkle F (2007) Macromolecules 40:1413–1420Google Scholar
  35. 35.
    Qin Y, Cui C, Jäkle F (2008) Macromolecules 41:2972–2974Google Scholar
  36. 36.
    Kim H, Kang YJ, Kang S, Kim KT (2012) J Am Chem Soc 134:4030–4033Google Scholar
  37. 37.
    Cheng F, Bonder EM, Jäkle F (2013) J Am Chem Soc 135:17286–17289Google Scholar
  38. 38.
    Wan W, Cheng F, Jäkle F (2014) Angew Chem Int Ed 53:8934–8938Google Scholar
  39. 39.
    Kotsuchibashi Y, Agustin RVC, Lu J-Y, Hall DG, Narain R (2013) ACS Macro Lett 2:260–264Google Scholar
  40. 40.
    Kim H, Kang YJ, Jeong ES, Kang S, Kim KT (2012) ACS Macro Lett 1:1194–1198Google Scholar
  41. 41.
    Roy D, Sumerlin BS (2012) ACS Macro Lett 1:529–532Google Scholar
  42. 42.
    Roy D, Cambre JN, Sumerlin BS (2009) Chem Commun (16):2106–2108Google Scholar
  43. 43.
    Cheng F, Jäkle F (2010) Chem Commun 46:3717–3719Google Scholar
  44. 44.
    Cheng F, Bonder EM, Salem S, Jäkle F (2013) Macromolecules 46:2905–2915Google Scholar
  45. 45.
    Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Prog Polym Sci 38:63–235Google Scholar
  46. 46.
    Barner L, Barner-Kowollik C, Davis TP, Stenzel MH (2004) Aust J Chem 57:19–24Google Scholar
  47. 47.
    Kim KT, Cornelissen JJLM, Nolte RJM, van Hest JCM (2009) Adv Mater 21:2787–2791Google Scholar
  48. 48.
    Cambre JN, Roy D, Gondi SR, Sumerlin BS (2007) J Am Chem Soc 129:10348–10349Google Scholar
  49. 49.
    Roy D, Cambre JN, Sumerlin BS (2008) Chem Commun 2477–2479Google Scholar
  50. 50.
    Cheng F, Bonder EM, Jäkle F (2012) Macromolecules 45:3078–3085Google Scholar
  51. 51.
    Cheng F, Bonder EM, Doshi A, Jäkle F (2012) Polym Chem 3:596–600Google Scholar
  52. 52.
    Nagai A, Kokado K, Miyake J, Chujo Y (2009) Macromolecules 42:5446–5452Google Scholar
  53. 53.
    Nagai A, Kokado K, Miyake J, Chujo Y (2010) J Polym Sci A Polym Chem 48:627–634Google Scholar
  54. 54.
    Shipman PO, Cui C, Lupinska P, Lalancette RA, Sheridan JB, Jäkle F (2013) ACS Macro Lett 2:1056–1060Google Scholar
  55. 55.
    Park MH, Kim T, Huh JO, Do Y, Lee MH (2011) Polymer 52:1510–1514Google Scholar
  56. 56.
    Dong JY, Manias E, Chung TC (2002) Macromolecules 35:3439–3447Google Scholar
  57. 57.
    Sung WY, Park MH, Park JH, Eo M, Yu M-S, Do Y, Lee MH (2012) Polymer 53:1857–1863Google Scholar
  58. 58.
    Zhang G, Kooi SE, Demas JN, Fraser CL (2008) Adv Mater 20:2099–2104Google Scholar
  59. 59.
    Zhang G, Fiore GL, St. Clair TL, Fraser CL (2009) Macromolecules 42:3162–3169Google Scholar
  60. 60.
    Zhang G, St. Clair TL, Fraser CL (2009) Macromolecules 42:3092–3097Google Scholar
  61. 61.
    Wagner CE, Kim JS, Shea KJ (2003) J Am Chem Soc 125:12179–12195Google Scholar
  62. 62.
    Luo J, Shea KJ (2010) Acc Chem Res 43:1420–1433Google Scholar
  63. 63.
    Tehfe MA, Brahmi MM, Fouassier JP, Curran DP, Malacria M, Fensterbank L, Lacote E, Lalevee J (2010) Macromolecules 43:2261–2267Google Scholar
  64. 64.
    Tehfe MA, Monot J, Brahmi MM, Bonin-Dubarle H, Curran DP, Malacria M, Fensterbank L, Lacote E, Lalevee J, Fouassier JP (2011) Polym Chem 2:625–631Google Scholar
  65. 65.
    Tehfe MA, Monot J, Malacria M, Fensterbank L, Fouassier JP, Curran DP, Lacote E, Lalevee J (2012) ACS Macro Lett 1:92–95Google Scholar
  66. 66.
    Telitel S, Schweizer S, Morlet-Savary F, Graff B, Tschamber T, Blanchard N, Fouassier JP, Lelli M, Lacote E, Lalevee J (2013) Macromolecules 46:43–48Google Scholar
  67. 67.
    Li H, Sundararaman A, Venkatasubbaiah K, Jäkle F (2007) J Am Chem Soc 129:5792–5793Google Scholar
  68. 68.
    Li H, Jäkle F (2011) Polym Chem 2:897–905Google Scholar
  69. 69.
    Li H, Sundararaman A, Pakkirisamy T, Venkatasubbaiah K, Schödel F, Jäkle F (2011) Macromolecules 44:95–103Google Scholar
  70. 70.
    Pammer F, Lalancette RA, Guo F, Jäkle F (2012) Macromolecules 45:6333–6343Google Scholar
  71. 71.
    Hoven CV, Wang HP, Elbing M, Garner L, Winkelhaus D, Bazan GC (2010) Nat Mater 9:249–252Google Scholar
  72. 72.
    Yamaguchi I, Choi BJ, Koizumi TA, Kubota K, Yamamoto T (2007) Macromolecules 40:438–443Google Scholar
  73. 73.
    Nagata Y, Otaka H, Chujo Y (2008) Macromolecules 41:737–740Google Scholar
  74. 74.
    Nagai A, Kokado K, Nagata Y, Chujo Y (2008) Macromolecules 41:8295–8298Google Scholar
  75. 75.
    Tanaka K, Tamashima K, Nagai A, Okawa T, Chujo Y (2013) Macromolecules 46:2969–2975Google Scholar
  76. 76.
    Welch GC, Bazan GC (2011) J Am Chem Soc 133:4632–4644Google Scholar
  77. 77.
    Zhao C, Wakamiya A, Yamaguchi S (2007) Macromolecules 40:3898–3900Google Scholar
  78. 78.
    Pammer F, Jäkle F (2012) Chem Sci 3:2598–2606Google Scholar
  79. 79.
    Ma X, Jiao JM, Yang J, Huang XB, Cheng YX, Zhu CJ (2012) Polymer 53:3894–3899Google Scholar
  80. 80.
    Reitzenstein D, Lambert C (2009) Macromolecules 42:773–782Google Scholar
  81. 81.
    Guo F, Yin X, Pammer F, Cheng F, Fernandez D, Lalancette RA, Jäkle F (2014) Macromolecules 47:7831–7841Google Scholar
  82. 82.
    Hayashi S, Koizumi T (2012) Polym Chem 3:613–616Google Scholar
  83. 83.
    Son JH, Jang G, Lee TS (2013) Polymer 54:3542–3547Google Scholar
  84. 84.
    Yeo H, Tanaka K, Chujo Y (2013) Macromolecules 46:2599–2605Google Scholar
  85. 85.
    Matsumi N, Naka K, Chujo Y (1998) J Am Chem Soc 120:5112–5113Google Scholar
  86. 86.
    Nagai A, Murakami T, Nagata Y, Kokado K, Chujo Y (2009) Macromolecules 42:7217–7220Google Scholar
  87. 87.
    Lorbach A, Bolte M, Li H, Lerner H-W, Holthausen MC, Jäkle F, Wagner M (2009) Angew Chem Int Ed 48:4584–4588Google Scholar
  88. 88.
    Matsumi N, Naka K, Chujo Y (1998) J Am Chem Soc 120:10776–10777Google Scholar
  89. 89.
    Sundararaman A, Victor M, Varughese R, Jäkle F (2005) J Am Chem Soc 127:13748–13749Google Scholar
  90. 90.
    Li H, Jäkle F (2009) Angew Chem Int Ed 48:2313–2316Google Scholar
  91. 91.
    Li H, Jäkle F (2010) Macromol Rapid Commun 31:915–920Google Scholar
  92. 92.
    Chen P, Lalancette RA, Jakle F (2011) J Am Chem Soc 133:8802–8805Google Scholar
  93. 93.
    Chai J, Wang C, Jia L, Pang Y, Graham M, Cheng SZD (2009) Synth Met 159:1443–1449Google Scholar
  94. 94.
    Zhu M, Jiang L, Yuan M, Liu X, Ouyang C, Zheng H, Yin X, Zuo Z, Liu H, Li Y (2008) J Polym Sci A Polym Chem 46:7401–7410Google Scholar
  95. 95.
    Tokoro Y, Nagai A, Kokado K, Chujo Y (2009) Macromolecules 42:2988–2993Google Scholar
  96. 96.
    Nagata Y, Chujo Y (2008) Macromolecules 41:2809–2813Google Scholar
  97. 97.
    Donuru VR, Vegesna GK, Velayudham S, Green S, Liu H (2009) Chem Mater 21:2130–2138Google Scholar
  98. 98.
    Meng G, Velayudham S, Smith A, Luck R, Liu H (2009) Macromolecules 42:1995–2001Google Scholar
  99. 99.
    Kim B, Ma B, Donuru VR, Liu H, Fréchet JMJ (2010) Chem Commun 46:4148–4150Google Scholar
  100. 100.
    Nagai A, Chujo Y (2010) Macromolecules 43:193–200Google Scholar
  101. 101.
    Yoshii R, Nagai A, Tanaka K, Chujo Y (2013) J Polym Sci A Polym Chem 51:1726–1733Google Scholar
  102. 102.
    Reus C, Guo F, John A, Winhold M, Lerner HW, Jäkle F, Wagner M (2014) Macromolecules 47:3727–3735Google Scholar
  103. 103.
    Heilmann JB, Scheibitz M, Qin Y, Sundararaman A, Jäkle F, Kretz T, Bolte M, Lerner H-W, Holthausen MC, Wagner M (2006) Angew Chem Int Ed 45:920–925Google Scholar
  104. 104.
    Hubner A, Qu ZW, Englert U, Bolte M, Lerner HW, Holthausen MC, Wagner M (2011) J Am Chem Soc 133:4596–4609Google Scholar
  105. 105.
    Pammer F, Lalancette RA, Jäkle F (2011) Chem Eur J 17:11280–11289Google Scholar
  106. 106.
    Smith K, El-Hiti GA, Hou DJ, DeBoos GA (1999) J Chem Soc Perkin Trans 1 2807–2812Google Scholar
  107. 107.
    Revell JD, Dörner B, White PD, Ganesan A (2005) Org Lett 7:831–833Google Scholar
  108. 108.
    Qin Y, Jäkle F (2007) J Inorg Organomet Polym Mater 17:149–157Google Scholar
  109. 109.
    Sheepwash E, Krampl V, Scopelliti R, Sereda O, Neels A, Severin K (2011) Angew Chem Int Ed 50:3034–3037Google Scholar
  110. 110.
    Grosche M, Herdtweck E, Peters F, Wagner M (1999) Organometallics 18:4669–4672Google Scholar
  111. 111.
    Ma K, Scheibitz M, Scholz S, Wagner M (2002) J Organomet Chem 652:11–19Google Scholar
  112. 112.
    Severin K (2009) Dalton Trans 5254–5264Google Scholar
  113. 113.
    Icli B, Solari E, Kilbas B, Scopelliti R, Severin K (2012) Chem Eur J 18:14867–14874Google Scholar
  114. 114.
    Miyata M, Chujo Y (2002) Polym J 34:967–969Google Scholar
  115. 115.
    Yamaguchi S, Akiyama S, Tamao K (2002) J Organomet Chem 652:3–9Google Scholar
  116. 116.
    Hudson ZM, Wang S (2009) Acc Chem Res 42:1584–1596Google Scholar
  117. 117.
    Wade CR, Broomsgrove AEJ, Aldridge S, Gabbai FP (2010) Chem Rev 110:3958–3984Google Scholar
  118. 118.
    Thomas SW III, Joly GD, Swager TM (2007) Chem Rev 107:1339–1386Google Scholar
  119. 119.
    Cai M, Daniel SL, Lavigne JJ (2013) Chem Commun 49:6504–6506Google Scholar
  120. 120.
    Chen P, Jäkle F (2011) J Am Chem Soc 133:20142–20145Google Scholar
  121. 121.
    Qin Y, Pagba C, Piotrowiak P, Jäkle F (2004) J Am Chem Soc 126:7015–7018Google Scholar
  122. 122.
    Qin Y, Kiburu I, Shah S, Jäkle F (2006) Macromolecules 39:9041–9048Google Scholar
  123. 123.
    Wang X-Y, Weck M (2005) Macromolecules 38:7219–7224Google Scholar
  124. 124.
    Qin Y, Kiburu I, Shah S, Jäkle F (2006) Org Lett 8:5227–5230Google Scholar
  125. 125.
    Nagata Y, Chujo Y (2008) Macromolecules 41:3488–3492Google Scholar
  126. 126.
    Nagata Y, Chujo Y (2007) Macromolecules 40:6–8Google Scholar
  127. 127.
    Nagai A, Kobayashi S, Nagata Y, Kokado K, Taka H, Kita H, Suzuri Y, Chujo Y (2010) J Mater Chem 20:5196–5201Google Scholar
  128. 128.
    Paris R, Quijada-Garrido I, Garcia O, Liras M (2011) Macromolecules 44:80–86Google Scholar
  129. 129.
    Nagai A, Miyake J, Kokado K, Nagata Y, Chujo Y (2008) J Am Chem Soc 130:15276–15278Google Scholar
  130. 130.
    Thivierge C, Loudet A, Burgess K (2011) Macromolecules 44:4012–4015Google Scholar
  131. 131.
    Pfister A, Zhang G, Zareno J, Horwitz AF, Fraser CL (2008) ACS Nano 2:1252–1258Google Scholar
  132. 132.
    Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL (2007) J Am Chem Soc 129:8942–8943Google Scholar
  133. 133.
    Fraser CL, Zhang GQ, Xu SP, Zestos AG, Evans RE, Lu JW (2010) ACS Appl Mater Interfaces 2:3069–3074Google Scholar
  134. 134.
    Zhang G, Palmer GM, Dewhirst MW, Fraser CL (2009) Nat Mater 8:747–751Google Scholar
  135. 135.
    Hamm-Alvarez SF, Contreras J, Xie JS, Chen YJ, Pei H, Zhang GQ, Fraser CL (2010) ACS Nano 4:2735–2747Google Scholar
  136. 136.
    Cui C, Bonder EM, Qin Y, Jäkle F (2010) J Polym Sci A Polym Chem 48:2438–2445Google Scholar
  137. 137.
    Roy D, Cambre JN, Sumerlin BS (2009) Chem Commun 16:2106–2108Google Scholar
  138. 138.
    Kim KT, Cornelissen JJLM, Nolte RJM, van Hest JCM (2009) J Am Chem Soc 131:13908–13909Google Scholar
  139. 139.
    Dowlut M, Hall DG (2006) J Am Chem Soc 128:4226–4227Google Scholar
  140. 140.
    Berube M, Dowlut M, Hall DG (2008) J Org Chem 73:6471–6479Google Scholar
  141. 141.
    Jay JI, Shukair S, Langheinrich K, Hanson MC, Cianci GC, Johnson TJ, Clark MR, Hope TJ, Kiser PF (2009) Adv Funct Mater 19:2969–2977Google Scholar
  142. 142.
    Jay JI, Lai BE, Myszka DG, Mahalingam A, Langheinrich K, Katz DF, Kiser PF (2010) Mol Pharm 7:116–129Google Scholar
  143. 143.
    Jay JI, Langheinrich K, Hanson MC, Mahalingam A, Kiser PF (2011) Soft Matter 7:5826–5835Google Scholar
  144. 144.
    Mahalingam A, Jay JI, Langheinrich K, Shukair S, McRaven MD, Rohan LC, Herold BC, Hope TJ, Kiser PF (2011) Biomaterials 32:8343–8355Google Scholar
  145. 145.
    Wu W, Zhou S (2013) Macromol Biosci 64:1464–1477Google Scholar
  146. 146.
    Li Y, Zhou S (2013) Chem Commun 49:5553–5555Google Scholar
  147. 147.
    Bapat AP, Roy D, Ray JG, Savin DA, Sumerlin BS (2011) J Am Chem Soc 133:19832–19838Google Scholar
  148. 148.
    Matsumi N, Sugai K, Sakamoto K, Mizumo T, Ohno H (2005) Macromolecules 38:4951–4954Google Scholar
  149. 149.
    Narita A, Shibayama W, Matsumi N, Ohno H (2006) Polym Bull 57:109–114Google Scholar
  150. 150.
    Matsumi N, Nakamura Y, Aoi K, Watanabe T, Mizumo T, Ohno H (2009) Polym J 41:437–441Google Scholar
  151. 151.
    Mager M, Becke S, Windisch H, Denninger U (2001) Angew Chem Int Ed 40:1898–1902Google Scholar
  152. 152.
    Moritz R, Zardalidis G, Butt HJ, Wagner M, Mullen K, Floudas G (2014) Macromolecules 47:191–196Google Scholar
  153. 153.
    Chen EY-X, Marks TJ (2000) Chem Rev 100:1391–1434Google Scholar
  154. 154.
    Kishi N, Ahn C-H, Jin J, Uozumi T, Sano T, Soga K (2000) Polymer 41:4005–4012Google Scholar
  155. 155.
    Sablong R, van der Vlugt JI, Thomann R, Mecking S, Vogt D (2005) Adv Synth Catal 347:633–636Google Scholar
  156. 156.
    Cui C, Bonder EM, Jäkle F (2010) J Am Chem Soc 132:1810–1812Google Scholar
  157. 157.
    Berven BM, Oviasuyi RO, Klassen RJ, Idacavage M, Gillies ER, Ragogna PJ (2013) J Polym Sci A Polym Chem 51:499–508Google Scholar
  158. 158.
    Trofimenko S (1999) Scorpionates-the coordination chemistry of polypyrazolylborate ligands. Imperial College Press, LondonGoogle Scholar
  159. 159.
    Qin Y, Shipman PO, Jäkle F (2012) Macromol Rapid Commun 33:562–567Google Scholar
  160. 160.
    Cui C, Lalancette RA, Jäkle F (2012) Chem Commun 48:6930–6932Google Scholar
  161. 161.
    Cui C, Heilmann-Brohl J, Perucha AS, Thomson MD, Roskos HG, Wagner M, Jäkle F (2010) Macromolecules 43:5256–5261Google Scholar
  162. 162.
    Cui C, Jäkle F (2009) Chem Commun (19):2744–2746Google Scholar
  163. 163.
    Cui C, Bonder EM, Jäkle F (2009) J Polym Sci A Polym Chem 47:6612–6618Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Rutgers University-NewarkNewarkUSA

Personalised recommendations