Skip to main content

The Preferred System of Reference Reloaded

  • Chapter
  • First Online:
Questioning the Foundations of Physics

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

According to Karl Popper assumptions are statements used to construct theories. During the construction of a theory whether the assumptions are either true or false turn out to be irrelevant in view of the fact that, actually, they gain their scientific value when the deductions derived from them suffice to explain observations. Science is enriched with assumptions of all kinds and physics is not exempted. Beyond doubt, some assumptions have been greatly beneficial for physics. They are usually embraced based on the kind of problems expected to be solved in a given moment of a science. Some have been quite useful and some others are discarded in a given moment and reconsidered in a later one. An illustrative example of this is the conception of light; first, according to Newton, as particle; then, according to Huygens, as wave; and then, again, according to Einstein, as particle. Likewise, once, according to Newton, a preferred system of reference (PSR) was assumed; then, according to Einstein, rejected; and then, here the assumption is reconsidered. It is claimed that the assumption that there is no PSR can be fundamentally wrong.

FQXi 2012 Contest, Which of our basic physical assumptions are wrong?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Weingartner, P. Mittelstaedt, Laws of Nature (Springer, Berlin, 2005)

    Google Scholar 

  2. M. Tegmark, Is the theory of everything merely the ultimate ensemble theory? Ann. Phys. 270, 1 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. M. Tegmark, The mathematical universe. Found. Phys. 38, 101 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Sir Isaac Newton, Newton’s Principia, The Mathematical Principles of the Natural Philosophy, 1st English edn. (Daniel Adee, New York, 1846)

    Google Scholar 

  5. E. Mach, The Science of Mechanics, 5th English edn. (The Open Court Publishing Company, La Salle, 1942)

    Google Scholar 

  6. A. Einstein, Zur elektrodynamik bewegter körper. Ann. Phys. 17, 891 (1905)

    Article  MATH  Google Scholar 

  7. A. Einstein, Über den einflutss der schwerkraft auf die ausbreitung des lichtes. Ann. Phys. 35, 898 (1911)

    Article  MATH  Google Scholar 

  8. A. Einstein, Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. 49, 769 (1916)

    Article  MATH  Google Scholar 

  9. A. Einstein, Hamilton’s principle and the general theory of relativity. S. B. Preuss. Akad. Wiss. (1916)

    Google Scholar 

  10. A. Einstein, Aether and the theory of relativity. Lectured delivered at Leyden (1920)

    Google Scholar 

  11. K. Popper, The Logic of Scientific Discovery, 1st edn. (Routledge Classics, London, 2009)

    Google Scholar 

  12. W. Heisenberg, The physical principles of the quantum theory. Z. Phys. (English Translation 1930, C. Eckart, F.C. Hoyt, 33 879 (1925))

    Google Scholar 

  13. H. Hertz, Electric Waves (MacMillan, London, 1900)

    Google Scholar 

  14. J.G. O’Hara, W. Pricha, Hertz and the Maxwellians (Peter Peregrinus Ltd., London, 1987)

    Google Scholar 

  15. B.J. Hunt, The Maxwellians (Cornell University Press, Ithaca, 1991)

    Google Scholar 

  16. P.A.M. Dirac, Is there an æther? Nature Lett. Editor 168, 906 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.A.M. Dirac, Is there an æther? Nature Lett. Editor 169, 702 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. M.J. Pinheiro, Do Maxwell’s equations need revision?—a methodological note (2005), arXiv:physics/0511103

  19. J. Larmor, On a dynamical theory of the electric and luminiferous medium. Philos. Trans. R. Soc. 190, 205–300 (1897)

    Article  ADS  MATH  Google Scholar 

  20. J. Larmor, Aether and Matter (C. J. Clay and Sons, Cambridge, 1900)

    MATH  Google Scholar 

  21. H.A. Lorentz, Simplified theory of electrical and optical phenomena in moving systems. Zittingsverslag Akad. v. Wet 7(507), 427 (1899)

    Google Scholar 

  22. H.A. Lorentz, Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc., Amsterdam. 6, 809–831 (1904)

    Google Scholar 

  23. H. Poincaré, Sur la dynamique de l’électron, on the dynamics of the electron. C. R. Acad. Sci 140, 1504 (1905)

    MATH  Google Scholar 

  24. H.E. Ives, The aberration of clocks and the clock paradox. J. Opt. Soc. Am. 27, 305 (1937)

    Article  ADS  MATH  Google Scholar 

  25. H.E. Ives, G.R. Stilwell, An experimental study of the rate of a moving clock. J. Opt. Soc. Am. 28, 215 (1938)

    Article  ADS  Google Scholar 

  26. G. Granek, Poincaré’s contributions to relativistic dynamics. Stud. Hist. Philos. Mod. Phys. 31, 15 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  28. G.A. Articolo, The Michelson-Morley experiment and the phase shift upon a 90\(^{\rm o}\) rotation. Am. J. Phys. 37, 215 (1969)

    Article  ADS  Google Scholar 

  29. P. Mazur, On the Michelson-Morley experiment. Am. J. Phys. 37, 218 (1969)

    Article  ADS  Google Scholar 

  30. M.M. Capria, F. Pambianco, On the Michelson-Morley experiment. Found. Phys. 24, 885 (1994)

    Article  ADS  Google Scholar 

  31. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  32. L. James, I. Nagle, G. Bearden, W.A. Zajc, Quark-gluon plasma at the RHIC and the LHC: perfect fluid too perfect? New J. Phys. 13, 075004 (2011)

    Google Scholar 

  33. I. Pérez, On the experimental determination of the one-way speed of light. Eur. J. Phys. 32, 993–1005 (2011)

    Article  Google Scholar 

  34. L.D. Landau, E.M. Lifshitz, Mechanics, Volume 1 of Course of Theoretical Physics, 3rd edn. (Butterworth-Heinemann, Oxford, 2000)

    Google Scholar 

  35. A. Grünbaum, The clock paradox in the special theory of relativity. Philos. Sci. 21(3), 249–253 (1954)

    Article  MathSciNet  Google Scholar 

  36. H. Ives, G.R. Stilwell, An experimental study of the rate of a moving clock II. J. Opt. Soc. Am. 31, 369 (1941)

    Article  ADS  Google Scholar 

  37. A. Einstein, Kosmologische betrachtungen zur allgemeinen relativitätstheorie. S.B. Preuss, Akad. Wiss. 142–157, (1917)

    Google Scholar 

  38. A. Einstein, S.B. Preuss, Akad. Wiss. 448, (1918)

    Google Scholar 

  39. W. Pauli, Theory of Relativity (Dover Publications, New York, 1958)

    MATH  Google Scholar 

  40. Robert M. Wald, Andreas Zoupas, General definition of “conserved quantities” in general relativity and other theories of gravity. Phys. Rev. D 61, 084027 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  41. L.B. Szabados, Quasi-local energy-momentum and angular momentum in general relativity. Living Rev. Relativ. 12, 4 (2009)

    ADS  Google Scholar 

  42. A. Harvey, E. Schucking, Einstein’s mistake and the cosmological constant. Am. J. Phys. 68, 723 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. S. Weinberg, Gravitation and Cosmology Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  45. H. Bondi, J. Samuel, The Lense-Thirring effect and Mach’s principle. Phys. Lett. A 228, 121–126 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. J. Barbour, H. Pfister, Mach’s Principle: From Newton’s Bucket to Quantum Gravity, vol. 6 (Birkhäuser, Boston, 1995)

    MATH  Google Scholar 

  47. S. Carroll, The cosmological constant. Living Rev. Relativ. 4, 1 (2001)

    Google Scholar 

  48. T. Padmanabhan, Cosmological constant—the weight of the vacuum. Phys. Rep. 380, 235–320 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. D. Dieks (ed.), The Ontology of Spacetime, vol. I & II (Elsevier, Amsterdam, 2006, 2008)

    Google Scholar 

  50. M. Urban, The quantum vacuum as the origin of the speed of light. Eur. J. Phys. D 67, 58 (2013)

    Article  ADS  Google Scholar 

  51. G. Volovik, The Universe in a Helium Droplet (Oxford University Press, New York, 2003)

    MATH  Google Scholar 

  52. F. Winterberg, Relativistic quantum mechanics as a consequence of the Planck mass plasma conjecture. Int. J. Theor. Phys. 46, 3294–3311 (2007)

    Article  MATH  Google Scholar 

  53. B. Haisch, A. Rueda, Y. Dobyns, Inertial mass and the quantum vacuum fields. Ann. Phys. 10, 393–414 (2001)

    Article  MATH  Google Scholar 

  54. A.A. Michelson, H.G. Gale, F. Pearson, The effect of the earth’s rotation on the velocity of light part II. Astrophys. J. 61, 140 (1925)

    Article  ADS  Google Scholar 

  55. E. Kretschmann, Über den physikalischen Sinn der Relativitatspostulate. Ann. Phys. 53, 575–614 (1917)

    MATH  Google Scholar 

  56. J.D. Norton, General covariance and the foundations of general relativity: eight decades of dispute. Rep. Prog. Phys. 56, 791–858 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  57. D. Dieks, Another look at general covariance and the equivalence of reference frames. Stud. Hist. Philos. Mod. Phys. 37, 174–191 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  58. E. Constanzo, M. Consoli, From classical to modern ether-drift experiments: the narrow window for a preferred frame. Phys. Lett. A 333, 355–363 (2004)

    Article  ADS  Google Scholar 

  59. T. Jacobson, D. Mattingly, Gravity with a dynamical preferred frame. Phys. Rev. D 64, 024028 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  60. V. Scarani, The speed of quantum information and the preferred frame: analysis of experimental data. Phys. Lett. A 276, 1–7 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. X.-H. Ye, L. Qiang, Inhomogeneous vacuum: an alternative interpretation to curved spacetime. Chin. Phys. Lett. 25, 1571–1573 (2008)

    Article  ADS  Google Scholar 

  62. T. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 1962)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Program and CONACYT Mexico under grant 186142. The author is thankful to the University of Saskatchewan, Prof. Alex Moewes for his support in this project, and the FQXi organizers of the 2012 contest for opening the doors to new and fresh ideas fundamental for the progress of physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perez, I. (2015). The Preferred System of Reference Reloaded. In: Aguirre, A., Foster, B., Merali, Z. (eds) Questioning the Foundations of Physics. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-13045-3_5

Download citation

Publish with us

Policies and ethics