Skip to main content

Weaving Commutators: Beyond Fock Space

  • Chapter
  • First Online:
  • 2583 Accesses

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

The symmetrization postulate and the associated Bose/Fermi (anti)-commutators for field mode operators are among the pillars on which local quantum field theory lays its foundations. They ultimately determine the structure of Fock space and are closely connected with the local properties of the fields and with the action of symmetry generators on observables and states. We here show that the quantum field theory describing relativistic particles coupled to three dimensional Einstein gravity as topological defects must be constructed using a deformed algebra of creation and annihilation operators. This reflects a non-trivial group manifold structure of the classical momentum space and a modification of the Leibniz rule for the action of symmetry generators governed by Newton’s constant. We outline various arguments suggesting that, at least at the qualitative level, these three-dimensional results could also apply to real four-dimensional world thus forcing us to re-think the ordinary multiparticle structure of quantum field theory and many of the fundamental aspects connected to it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For simplicity we restrict to functions on \(\mathrm {SO}(3)\simeq \mathrm {SU}(2)/\mathbb {Z}_2\).

References

  1. S. Carlip, Rep. Prog. Phys. 64, 885 (2001). [gr-qc/0108040]

    Google Scholar 

  2. S.W. Hawking, Phys. Rev. D 14, 2460 (1976)

    Google Scholar 

  3. S.D. Mathur, Lect. Notes Phys. 769, 3 (2009). arXiv:0803.2030 [hep-th]

  4. S. Carlip, (Cambridge University Press, Cambridge, 1998), p. 276

    Google Scholar 

  5. S. Deser, R. Jackiw, G. ’t Hooft, Ann. Phys. 152, 220 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  6. H.J. Matschull, M. Welling, Class. Quant. Gravity 15, 2981–3030 (1998). [gr-qc/9708054]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. B.J. Schroers, PoS QG -PH, 035 (2007). arXiv:0710.5844 [gr-qc]

  8. T.H. Koornwinder, F.A. Bais, N.M. Muller, Commun. Math. Phys. 198, 157 (1998). [q-alg/9712042]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. M. Arzano, Phys. Rev. D 83, 025025 (2011). arXiv:1009.1097 [hep-th]

  10. M. Arzano, Phys. Rev. D 77, 025013 (2008). arXiv:0710.1083 [hep-th]

  11. R. Haag, J.T. Lopuszanski, M. Sohnius, Nucl. Phys. B 88, 257 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  12. A.M.L. Messiah, O.W. Greenberg, Phys. Rev. 136, B248 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Arzano, D. Benedetti, Int. J. Mod. Phys. A 24, 4623 (2009). arXiv:0809.0889 [hep-th]

  14. M. Arzano, J. Kowalski-Glikman, to appear

    Google Scholar 

  15. Y. Sasai, N. Sasakura, Prog. Theor. Phys. 118, 785 (2007). arXiv:0704.0822 [hep-th]

  16. N.J. Vilenkin, A.U. Klimyk, Representation of Lie Groups and Special Functions—1991, vols. 3 (Kluwer, 1993)

    Google Scholar 

  17. O.W. Greenberg, Phys. Rev. D 43, 4111–4120 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Amelino-Camelia, A. Marciano, M. Arzano, in Handbook of Neutral Kaon Interferometry at a Phi-factory, vol. 22, ed. by A. Di Domenico (2007), pp. 155–186

    Google Scholar 

  19. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 84, 084010 (2011). arXiv:1101.0931 [hep-th]

  20. G. Amelino-Camelia, M. Arzano, S. Bianco, R.J. Buonocore, Class. Quant. Gravity 30, 065012 (2013) arXiv:1210.7834 [hep-th]

  21. G. Amelino-Camelia, M. Arzano, J. Kowalski-Glikman, G. Rosati, G. Trevisan, Class. Quant. Gravity 29, 075007 (2012). arXiv:1107.1724 [hep-th]

  22. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Gen. Relativ. Gravity 43, 2547 (2011) [Int. J. Mod. Phys. D 20, 2867 (2011)]. arXiv:1106.0313 [hep-th]

  23. G. Hooft, Phys. Lett. B 198, 61 (1987)

    Article  ADS  Google Scholar 

  24. H.L. Verlinde, E.P. Verlinde, Nucl. Phys. B 371, 246 (1992). [hep-th/9110017]

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Hooft, Found. Phys. 38, 733 (2008). arXiv:0804.0328 [gr-qc]

Download references

Acknowledgments

I would like to thank J. Kowalski-Glikman and V. De Carolis for discussions. This work is supported by a Marie Curie Career Integration Grant within the 7th European Community Framework Programme and in part by a grant from the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Arzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arzano, M. (2015). Weaving Commutators: Beyond Fock Space. In: Aguirre, A., Foster, B., Merali, Z. (eds) Questioning the Foundations of Physics. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-13045-3_16

Download citation

Publish with us

Policies and ethics