Skip to main content

Quantum-Informational Principles for Physics

  • Chapter
  • First Online:
Questioning the Foundations of Physics

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

It is time to to take a pause of reflection on the general foundations of physics, for re-examining the logical solidity of the most basic principles, as the relativity and the gravity-acceleration equivalence. The validity at the Planck scale of such principles is under dispute. A constructive criticism engages us in seeking new general principles, which reduce to the old ones only in the already explored domain of energies. At the very basis of physics there are epistemological and operational rules for the same formulability of the physical law and for the computability of its theoretical predictions. Such rules give rise to new solid principles, leading us to a quantum-information theoretic formulation, that hinges on the logical identification of the experimental protocol with the quantum algorithm.

The following dissertation is a minimally updated version of the original essay presented at the FQXi Essay Contest 2012 “Questioning the foundations”. A short summary of the follow-ups and recent research results is given in the Postscriptum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feynman and Computation (Westview Press, Boulder, 2002)

    Google Scholar 

  2. G. Chiribella, G.M. D’Ariano, P. Perinotti, Phys. Rev. A 84, 012311 (2011)

    Article  ADS  Google Scholar 

  3. C. Brukner, Physics 4, 55 (2011)

    Article  Google Scholar 

  4. L. Hardy, (2011). arXiv:1104.2066

  5. L. Masanes, M.P. Müller, New J. Phys. 13, 063001 (2011)

    Article  ADS  Google Scholar 

  6. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. E. Verlinde, J. High Energy Phys. 4, 029 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Reichenbach, The Philosophy of Space and Time (Dover, New York, 1958)

    MATH  Google Scholar 

  9. G. Ludwig, G. Thurler, A New Foundation of Physical Theories (Springer, New York, 2006)

    Book  MATH  Google Scholar 

  10. L. Hardy, (2001). arXiv:quant-ph/0101012

  11. H. Barnum, J. Barrett, L. Orloff Clark, M. Leifer, R. Spekkens, N. Stepanik, A. Wilce, R. Wilke, New J. Phys. 12, 3024 (2010)

    Google Scholar 

  12. B. Dakic, C. Brukner, in Deep Beauty: Understanding the Quantum World Through Mathematical Innovation, ed. by H. Halvorson (Cambridge University Press, 2011)

    Google Scholar 

  13. B. Coecke, Contemp. Phys. 51, 59 (2010)

    Article  ADS  Google Scholar 

  14. B. Russell, Proc. Aristot. Soc. 13, 1 (1912)

    Google Scholar 

  15. C.A. Fuchs, (2010). arXiv:1003.5209

  16. L. Hardy, W.K. Wootters, Found. Phys. 42, 454 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. G.M. D’Ariano, in Philosophy of Quantum Information and Entanglement, ed. by A. Bokulich, G. Jaeger (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  18. D. Deutsch, R. Soc. Lond. 400, 97 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. B. Schumacher, R.F. Werner, (2004). arXiv:quant-ph/0405174

  20. A. Bisio, G.M. D’Ariano, A. Tosini, (2012). arXiv:1212.2839

  21. G.M. D’Ariano, FQXi Essay Contest Is Reality Digital or Analog? (2011)

    Google Scholar 

  22. G.M. D’Ariano, Il Nuovo Saggiatore 28, 13 (2012)

    Google Scholar 

  23. G.M. D’Ariano, P. Perinotti, Phys. Rev. A 90, 062106 (2014)

    Google Scholar 

  24. G.M. D’Ariano, Phys. Lett. A 376, 678 (2012). arXiv:1012.0756

    Google Scholar 

  25. S. Lloyd, (2012). arXiv:1206.6559

  26. N. Margolus, L.B. Levitin, Phys. D 120, 188 (1998)

    Article  Google Scholar 

  27. H. Weyl, Philosophy of Mathematics and Natural Sciences (Princeton University Press, Princeton, 1949)

    Google Scholar 

  28. T. Fritz, Discret. Math. 313, 1289 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. G.M. D’Ariano, A. Tosini, Stud. Hist. Philos. Mod. Phys. 44, 294 (2013)

    Google Scholar 

  30. G.M. D’Ariano, F. Manessi, P. Perinotti, A. Tosini, (2014). arXiv:1403.2674

  31. A. Bisio, G.M. D’Ariano, A. Tosini, Phys. Rev. A 88, 032301 (2013)

    Google Scholar 

  32. A. Bibeau-Delisle, A. Bisio, G.M. D’Ariano, P. Perinotti, A. Tosini, (2013). arXiv:1310.6760

  33. A. Bisio, G.M. D’Ariano, P. Perinotti, arXiv:1407.6928

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Mauro D’Ariano .

Editor information

Editors and Affiliations

Postscriptum

Postscriptum

All predictions contained in this Essay has been later derived, and are now available in technical papers. The reader should look at Ref. [23]. Other results can be found in Ref. [20, 30, 31].

The main result is contained in manuscript [23], entitled “Derivation of the Dirac equation from informational principles”. There it is proved the remarkable result that from the only general assumptions of locality, homogeneity, isotropy, linearity and unitarity of the interaction network, only two quantum cellular automata follow that have minimum dimension two, corresponding to a Fermi field. The two automata are connected by CPT, manifesting the breaking of Lorentz covariance. Both automata converge to the Weyl equation in the relativistic limit of small wave-vectors, where Lorentz covariance is restored. Instead, in the ultra-relativistic limit of large wave-vectors (i.e. at the Planck scale), in addition to the speed of light one has extra invariants in terms of energy, momentum, and length scales. The resulting distorted Lorentz covariance belongs to the class of the Doubly Special Relativity of Amelino-Camelia/Smolin/Magueijo. Such theory predicts the phenomenon of relative locality, namely that also coincidence in space, not only in time, depends on the reference frame. In terms of energy and momentum covariance is given by the group of transformations that leave the automaton dispersion relations unchanged. Via Fourier transform one recovers a space-time of quantum nature, with points in superposition. All the above results about distorted Lorentz covariance are derived in the new Ref. [32].

The Weyl QCA is the elementary building block for both the Dirac and the Maxwell field. The latter is recovered in the form of the de Broglie neutrino theory of the photon. The Fermionic fundamental nature of light follows from the minimality of the field dimension, which leads to the Boson as an emergent notion [33].

The discrete framework of the theory allows to avoid all problems that plague quantum field theory arising from the continuum, including the outstanding problem of localization. Most relevant, the theory is quantum ab initio, with no need of quantization rules.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Giacomo Mauro D’Ariano

About this chapter

Cite this chapter

D’Ariano, G.M. (2015). Quantum-Informational Principles for Physics . In: Aguirre, A., Foster, B., Merali, Z. (eds) Questioning the Foundations of Physics. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-13045-3_11

Download citation

Publish with us

Policies and ethics