Skip to main content

Trace Simplifications Preserving Temporal Logic Formulae with Case Study in a Coupled Model of the Cell Cycle and the Circadian Clock

  • Conference paper
Computational Methods in Systems Biology (CMSB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8859))

Included in the following conference series:

Abstract

Calibrating dynamical models on experimental data time series is a central task in computational systems biology. When numerical values for model parameters can be found to fit the data, the model can be used to make predictions, whereas the absence of any good fit may suggest to revisit the structure of the model and gain new insights in the biology of the system. Temporal logic provides a formal framework to deal with imprecise data and specify a wide variety of dynamical behaviors. It can be used to extract information from numerical traces coming from either experimental data or model simulations, and to specify the expected behaviors for model calibration. The computation time of the different methods depends on the number of points in the trace so the question of trace simplification is important to improve their performance. In this paper we study this problem and provide a series of trace simplifications which are correct to perform for some common temporal logic formulae. We give some general soundness theorems, and apply this approach to period and phase constraints on the circadian clock and the cell cycle. In this application, temporal logic patterns are used to compute the relevant characteristics of the experimental traces, and to measure the adequacy of the model to its specification on simulation traces. Speed-ups by several orders of magnitude are obtained by trace simplification even when produced by smart numerical integration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

    Article  Google Scholar 

  2. Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics 26(18), i603–i610 (2010)

    Google Scholar 

  3. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21(suppl.1), i19–i28 (2005)

    Google Scholar 

  4. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: A fruitful application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

    Google Scholar 

  7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, pp. 238–252. ACM Press, New York (1977)

    Google Scholar 

  8. de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the seventh Pacific Symposium on Biocomputing, pp. 400–412 (January 2002)

    Google Scholar 

  12. Emi, N., Camille, S., Christoph, B., Thierry, L., Felix, N., Schibler, U.: Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705 (2004)

    Article  Google Scholar 

  13. Fages, F., Rizk, A.: On temporal logic constraint solving for the analysis of numerical data time series. Theoretical Computer Science 408(1), 55–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fages, F., Traynard, P.: Temporal logic modeling of dynamical behaviors: First-order patterns and solvers. In: del Cerro, L.F., Inoue, K. (eds.) Logical Modeling of Biological Systems, ch.8, pp. 307–338. ISTE Ltd. (2014)

    Google Scholar 

  15. Heitzler, D., Durand, G., Gallay, N., Rizk, A., Ahn, S., Kim, J., Violin, J.D., Dupuy, L., Gauthier, C., Piketty, V., Crépieux, P., Poupon, A., Clément, F., Fages, F., Lefkowitz, R.J., Reiter, E.: Competing G protein-coupled receptor kinases balance G protein and β-arrestin signaling. Molecular Systems Biology 8(590) (June 2012)

    Google Scholar 

  16. Leloup, J.-C., Goldbeter, A.: Toward a detailed computational model for the mammalian circadian clock. Proceedings of the National Academy of Sciences 100, 7051–7056 (2003)

    Article  Google Scholar 

  17. Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Matsuo, T., Yamaguchi, S., Mitsui, S., Emi, A., Shimoda, F., Okamura, H.: Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643), 255–259 (2003)

    Article  Google Scholar 

  19. Qu, Z., MacLellan, W.R., Weiss, J.N.: Dynamics of the cell cycle: checkpoints, sizers, and timers. Biophysics Journal 85(6), 3600–3611 (2003)

    Article  Google Scholar 

  20. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 12(25), il69–il78 (2009)

    Google Scholar 

  21. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theoretical Computer Science 412(26), 2827–2839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. Automated Software Engineering 12(2), 151–197 (2005)

    Article  Google Scholar 

  23. Stoma, S., Donzé, A., Bertaux, F., Maler, O., Batt, G.: STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification. PLoS Computational Biology 9(5), e1003056 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Traynard, P., Fages, F., Soliman, S. (2014). Trace Simplifications Preserving Temporal Logic Formulae with Case Study in a Coupled Model of the Cell Cycle and the Circadian Clock. In: Mendes, P., Dada, J.O., Smallbone, K. (eds) Computational Methods in Systems Biology. CMSB 2014. Lecture Notes in Computer Science(), vol 8859. Springer, Cham. https://doi.org/10.1007/978-3-319-12982-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12982-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12981-5

  • Online ISBN: 978-3-319-12982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics