Skip to main content

Fragmentations with Pitch, Rhythm and Parallelism Constraints for Variation Matching

  • Conference paper
  • First Online:
Sound, Music, and Motion (CMMR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8905))

Included in the following conference series:

Abstract

Composers commonly employ ornamentation and elaboration techniques to generate varied versions of an initial core melodic idea. Dynamic programming techniques, based on edit operations, are used to find similarities between melodic strings. However, replacements, insertions and deletions may give non-musically pertinent similarities, especially if rhythmic or metrical structure is not considered. We propose, herein, to compute the similarity between a reduced query and a melody employing only fragmentation operations. Such fragmentations transform one note from the reduced query into a possible large set of notes, taking into account pitch and rhythm constraints, as well as elementary parallelism information. We test the proposed algorithm on four “theme and variations” piano pieces by W. A. Mozart and L. van Beethoven and show that the proposed constrained fragmentation operations are capable of detecting simple variations with high sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlbäck, S.: Melodic similarity as a determinant of melody structure. Musicae Scientiae Discussion Forum 4A, 235–280 (2007)

    Article  Google Scholar 

  2. Barton, C., Cambouropoulos, E., Iliopoulos, C.S., Lipták, Z.: Melodic string matching via interval consolidation and fragmentation. In: Artificial Intelligence and Innovations Conference (AIAI 2012), pp. 460–469 (2012)

    Google Scholar 

  3. Cambouropoulos, E.: How similar is similar? Musicae Scientiae Discussion Forum 4A, 7–24 (2009)

    Article  Google Scholar 

  4. Cambouropoulos, E., Crawford, T., Iliopoulos, C.S.: Pattern processing in melodic sequences: challenges, caveats and prospects. In: Artifical Intelligence and Simulation of Behaviour (AISB 99), pp. 42–47 (1999)

    Google Scholar 

  5. Cambouropoulos, E., Crochemore, M., Iliopoulos, C.S., Mouchard, L., Pinzon, Y.J.: Algorithms for computing approximate repetitions in musical sequences. Int. J. Comput. Math., 129–144 (1999)

    Google Scholar 

  6. Clausen, M.: Modified Mongeau-Sankoff algorithm. http://www-mmdb.iai.uni-bonn.de/forschungprojekte/midilib/english/saddemo.html

  7. Clifford, R., Iliopoulos, C.S.: Approximate string matching for music analysis. Soft. Comput. 8(9), 597–603 (2004)

    Article  MATH  Google Scholar 

  8. Conklin, D., Anagnostopoulou, C.: Segmental pattern discovery in music. INFORMS J. Comput. 18(3), 285–293 (2006)

    Article  Google Scholar 

  9. Crawford, T., Iliopoulos, C.S., Raman, R.: String matching techniques for musical similarity and melodic recognition. Comput. Musicology 11, 71–100 (1998)

    Google Scholar 

  10. Deutsch, D., Feroe, J.: The internal representation of pitch sequences in tonal music. Psychol. Rev. 88(6), 503–522 (1981)

    Article  Google Scholar 

  11. Giraud, M., Groult, R., Levé, F.: Subject and counter-subject detection for analysis of the Well-Tempered Clavier fugues. In: Computer Music Modeling and Retrieval (CMMR 2012) (2012)

    Google Scholar 

  12. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  13. Hanna, P., Ferraro, P., Robine, M.: On optimizing the editing algorithms for evaluating similarity between monophonic musical sequences. J. New Music Res. 36, 267–279 (2007). http://hal.archives-ouvertes.fr/hal-00285560

  14. Hewlett, W.B., Selfridge-Field, E. (eds.): Melodic Similarity: Concepts, Procedures, and Applications. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Huron, D.: Music information processing using the Humdrum toolkit: concepts, examples, and lessons. Comput. Music J. 26(2), 11–26 (2002)

    Article  Google Scholar 

  16. Kageyama, T., Mochizuki, K., Takashima, Y.: Melody retrieval with humming. In: International Computer Music Conference, pp. 349–351 (1993)

    Google Scholar 

  17. Lartillot, O.: Motivic pattern extraction in symbolic domain. In: Intelligent Music Information Systems: Tools and Methodologies, pp. 236–260 (2007)

    Google Scholar 

  18. Lemström, K., Ukkonen, E.: Including interval encoding into edit distance based music comparison and retrieval. In: Symposium on Creative and Cultural Aspects and Applications of AI and Cognitive Science (AISB 2000), pp. 53–60 (2000)

    Google Scholar 

  19. Lerdhal, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983, 1996)

    Google Scholar 

  20. Marsden, A.: Recognition of variations using automatic Schenkerian reduction. In: International Society for Music Information Retrieval Conference (ISMIR 2010), pp. 501–506 (2010)

    Google Scholar 

  21. Marsden, A.: Interrogating melodic similarity: a definitive phenomenon or the product of interpretation? J. New Music Res. 41(4), 323–335 (2012)

    Article  Google Scholar 

  22. Meredith, D.: A geometric language for representing structure in polyphonic music. In: International Society for Music Information Retrieval Conference (ISMIR 2012) (2012)

    Google Scholar 

  23. Mongeau, M., Sankoff, D.: Comparison of musical sequences. Comput. Humanit. 24, 161–175 (1990)

    Article  Google Scholar 

  24. Mäkinena, V., Navarro, G., Ukkonen, E.: Algorithms for transposition invariant string matching (extended abstract). In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 191–202. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Müllensiefen, D., Frieler, K.: Modelling experts’ notion of melodic similarity. Musicae Scientiae Discussion Forum 4A, 183–210 (2007)

    Article  Google Scholar 

  26. Typke, R.: Music retrieval based on melodic similarity. Ph.D. thesis, Univ. Utrecht (2007)

    Google Scholar 

  27. Ukkonen, E., Lemström, K., Mäkinen, V.: Geometric algorithms for transposition invariant content based music retrieval. In: International Conference on Music Information Retrieval (ISMIR 2003), pp. 193–199 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Giraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Giraud, M., Déguernel, K., Cambouropoulos, E. (2014). Fragmentations with Pitch, Rhythm and Parallelism Constraints for Variation Matching. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds) Sound, Music, and Motion. CMMR 2013. Lecture Notes in Computer Science(), vol 8905. Springer, Cham. https://doi.org/10.1007/978-3-319-12976-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12976-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12975-4

  • Online ISBN: 978-3-319-12976-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics