Skip to main content

Utilizing Emotions in Autonomous Robots: An Enactive Approach

  • Chapter
  • First Online:
Emotion Modeling

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8750))

Abstract

In this chapter, we present a minimalist approach to utilizing the computational principles of affective processes and emotions for autonomous robotics applications. The focus of this paper is on the presentation of this framework in reference to preservation of agent autonomy across levels of cognitive-affective competences. This approach views autonomy in reference to (i) embodied (e.g. homeostatic), and (ii) dynamic (e.g. neural-dynamic) processes, required to render adaptive such cognitive-affective competences. We hereby focus on bridging bottom-up (standard autonomous robotics) and top-down (psychology-based dimensional theoretic) modelling approaches. Our enactive approach we characterize according to bi-directional grounding (inter-dependent bottom-up and top-down regulation). As such, from an emotions theory perspective, ‘enaction’ is best understood as an embodied and dynamic appraisal perspective. We attempt to clarify our approach with relevant case studies and comparison to other existing approaches in the modelling literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The artificial metabolism is not autopoietic and to the extent that incorporation of such a constitutive system into an architecture is in line with our enactive approach that requires operational closure, top-down parameterization of the system is prerequisite.

  2. 2.

    Meta-parameters are the parameters used in reinforcement learning algorithms whose values are typically fixed. Allowing for these parameters to vary as a function of regulatory feedback provides a way to reduce the design and potentially increase the adaptivity of the agent.

References

  1. Arnold, M.B.: Emotion and Personality. Columbia University Press, New York (1960)

    Google Scholar 

  2. Hudlicka, E.: Computational Affective Modeling and Affective User Modeling, T13: Tutorial Notes. HCI International, Crete (2014)

    Google Scholar 

  3. Prinz, J.J.: Gut Reactions: A Perceptual Theory of Emotion. Oxford University Press, New York (2004)

    Google Scholar 

  4. Scherer, K.R.: Emotions are emergent processes: they require a dynamic computational architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3459–3474 (2009)

    Google Scholar 

  5. Lewis, M.D.: Bridging emotion theory and neurobiology through dynamic systems modeling. Behav. Brain Sci. 28, 169–245 (2005)

    Google Scholar 

  6. Thompson, E.: Mind in Life: Biology, Phenomenology, and the Sciences of Mind. Harvard University Press, Cambridge (2007)

    Google Scholar 

  7. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 11(2), 151–180 (2007)

    Article  Google Scholar 

  8. McFarland, D., Spier, E.: Basic cycles, utility and opportunism in self-sufficient robots. Rob. Auton. Syst. 20, 179–190 (1997)

    Article  Google Scholar 

  9. McFarland, D., Bösser, T.: Intelligent Behavior in Animals and Robots. The MIT Press, Cambridge (1993)

    Google Scholar 

  10. McFarland, D.: Guilty Robots, Happy Dogs. Oxford University Press, New York (2008)

    Google Scholar 

  11. Damasio, A.R.: The Feeling of What Happens: Body, Emotion and he Making of Consciousness. Vintage, London (1999)

    Google Scholar 

  12. Damasio, A.R.: Looking for Spinoza: Joy, Sorrow and the Feeling Brain. Harcourt, Orlando (2003)

    Google Scholar 

  13. Damasio, A.R.: Self Comes to Mind: Constructing the Conscious Brain. Pantheon Books, New York (2010)

    Google Scholar 

  14. Morse, A., Lowe, R., Ziemke, T.: Towards an enactive cognitive architecture. In: Cognitive Systems, 1st International Conference on Cognitive Systems (2008)

    Google Scholar 

  15. Ziemke, T., Lowe, R.: On the role of emotion in embodied cognitive architectures: from organisms to robots. Cognit. Comput. 1, 104–117 (2009)

    Article  Google Scholar 

  16. Lowe, R., Ziemke, T.: The role of reinforcement in affective computation. In: Computational Intelligence for Creativity and Affective Computing (CICAC), 2013 IEEE Symposium, pp. 17–24 (2013)

    Google Scholar 

  17. Vernon, D., von Hofsten, C., Fadiga, L.: A Roadmap for Cognitive Development in Humanoid Robots, COSMOS 11. Springer, Berlin (2010)

    Google Scholar 

  18. Brooks, R.A.: Cambrian Intelligence. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  19. Oatley, K., Johnson-Laird, P.N.: Towards a cognitive theory of emotions. Cogn. Emot. 1, 29–50 (1987)

    Article  Google Scholar 

  20. Scherer, K.: Emotion and emotional competence: conceptual and theoretical issues for modelling agents. In: Scherer, K., Bänziger, T., Roesch, E.B. (eds.) Blueprint for Affective Computing: A Sourcebook, pp. 3–21. Oxford University Press, New York (2010)

    Google Scholar 

  21. Froese, T., Ziemke, T.: Enactive artificial intelligence. Artif. Int. 173, 466–500 (2009)

    Article  Google Scholar 

  22. Lowe, R., Ziemke, T.: The feeling of action tendencies: on the emotional regulation of goal-directed behavior. Front. Psychol. 2, 1–24 (2011)

    Article  Google Scholar 

  23. Scherer, K.: The component process model: architecture for a comprehensive computational model of emergent emotion. In: Scherer, K., Bänziger, T., Roesch, E.B. (eds.) Blueprint for Affective Computing: A Sourcebook, pp. 47–71. Oxford University Press, New York (2010)

    Google Scholar 

  24. Noë, A.: Action in Perception. MIT Press, Cambridge (2004)

    Google Scholar 

  25. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer, K., Bänziger, T., Roesch, E.B. (eds.) Blueprint for Affective Computing: A Sourcebook, pp. 21–41. Oxford University Press, New York (2010)

    Google Scholar 

  26. Sloman, A., Chrisley, R., Scheutz, M.: The architectural basis of affective states and processes. In: Fellous, J.-M., Arbib, M.A. (eds.) Who Needs Emotions? The Brain Meets the Robot, pp. 203–245. Oxford University Press, New York (2005)

    Chapter  Google Scholar 

  27. Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14, 261–292 (1996)

    Article  MathSciNet  Google Scholar 

  28. Deshmukh, A., Vargas, P.A., Aylett, R., Brown, K.: Towards socially constrained power management for long-term operation of mobile robots. In: Towards Autonomous Robotic Systems (2010)

    Google Scholar 

  29. Dias, J., Mascarenhas, S., Paiva, A.: Fatima modular: towards an agent architecture with a generic appraisal framework. In: International Workshop on Standards for Emotion Modeling (2011)

    Google Scholar 

  30. Ashby, W.R.: Design for a Brain: The Origin of Adaptive Behaviour. Chapman and Hall, London (1960)

    Book  MATH  Google Scholar 

  31. Fricke, O., Lehmkuhl, G., Pfaff, D.W.: Cybernetic principles in the systematic concept of hypothalamic feeding control. Eur. J. Endocrinol. 154, 167–173 (2006)

    Article  Google Scholar 

  32. Melhuish, C., Ieropoulos, I., Greenman, J., Horsfield, I.: Energetically autonomous robots: food for thought. Auton. Robots 21, 187–198 (2006)

    Article  Google Scholar 

  33. Spier, E.: From reactive behaviour to adaptive behaviour. Ph.D. thesis, University of Sussex (1997)

    Google Scholar 

  34. Avila-Garcìa, O.: Towards emotional modulation of action selection in motivated autonomous robots. Ph.D. thesis, Department of Computer Science, University of Hertfordshire, Hatfield (2004)

    Google Scholar 

  35. Avila-Garcìa, O., Cañamero, L.: Hormonal modulation of perception in motivation-based action selection architectures. In: Proceedings of Agents that Want and Like: Motivational and Emotional Roots of Cognition and Action, Symposium of the AISB05 Convention, pp. 9–17. University of Hertfordshire, Hatfield (2005)

    Google Scholar 

  36. Sutton, R.S., Barto, A.G.: Time-derivative models of Pavlovian reinforcement. In: Gabriel, M., Moore, J. (eds.) Learning and Computational Neuroscience: Foundation of Adaptive Networks, pp. 497–537. MIT Press, Cambridge (1990)

    Google Scholar 

  37. Jacobs, E., Broekens, J., Jonker, C.: Emergent dynamics of joy, distress, hope and fear in reinforcement learning agents. In: AAMAS (2014, in press)

    Google Scholar 

  38. Gadanho, S.G.: Learning behavior-selection by emotions and cognition in a multi-goal robot task. J. Mach. Learn. Res. 4, 385–412 (2003)

    Google Scholar 

  39. Montebelli, A., Lowe, R., Ieropoulos, I., Greenman, J., Melhuish, C., Ziemke, T.: Microbial fuel cell driven behavioral dynamics in robot simulations. In: Fellermann, H., Drr, M., Hanczyc, M., Laursen, L., Maurer, S., Merkle, D., Monnard, P.-A., Sty, K., Rasmussen, S. (eds.) Artificial Life XII, pp. 749–756. The MIT Press, Odense (2010)

    Google Scholar 

  40. Lowe, R., Montebelli, A., Ieropoulos, I., Greenman, J., Melhuish, C., Ziemke, T.: Grounding motivation in energy autonomy: a study of artificial metabolism constrained robot dynamics. In: Fellermann, H., Drr, M., Hanczyc, M., Laursen, L., Maurer, S., Merkle, D., Monnard, P.-A., Sty, K., Rasmussen, S. (eds.) Artificial Life XII, pp. 725–732. The MIT Press, Odense (2010)

    Google Scholar 

  41. Husbands, P., Smith, T., Jakobi, N., O’Shea, M.: Better living through chemistry: evolving GasNets for robot control. Connect. Sci. 10(3/4), 185–210 (1998)

    Article  Google Scholar 

  42. Lowe, R.: Designing for emergent ultrastable behaviour in complex artificial systems – the quest for minimizing heteronomous constraints. Constr. Found. (special issue on ‘computational approaches to constructivism’, open peer commentary on the target article “Homeostats for the 21st Century? Simulating Ashby Simulating the Brain”) 9(1), 105–107 (2013)

    Google Scholar 

  43. Kiryazov, K., Lowe, R., Montebelli, A., Ziemke, T., Becker-Asano, C.: From the virtual to the robotic: bringing emoting and appraising agents into reality. In: FET Conference (2011)

    Google Scholar 

  44. Kiryazov, K., Lowe, R., Becker-Asano, C., Randazzo, M.: The role of arousal in two resource problem tasks for humanoid service robots. In: 22nd IEEE International Symposium on Robot and Human Interactive Communication (Ro-Man) (2013, in press)

    Google Scholar 

  45. Kiryazov, K, Lowe, R.: The role of arousal in embodying the cue-deficit model in multi-resource human-robot interaction. In: European Conference of Artificial Life (ECAL) (2013, accepted)

    Google Scholar 

  46. Becker-Asano, C., Wachsmuth, I.: Affective computing with primary and secondary emotions in a virtual human. Auton. Agents Multi-Agent Syst. 20, 32–49 (2010)

    Article  Google Scholar 

  47. Sterling, P.: Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In: Schulkin, J. (ed.) Allostasis, Homeostasis, and the Costs of Adaptation. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  48. Schulkin, J.: Social allostasis: anticipatory regulation of the internal milieu. Front. Evol. Neurosci. 2(111), 1–15 (2011)

    Google Scholar 

  49. Koole, S.L.: The psychology of emotion regulation: an integrative review. Cogn. Emot. 23, 4–41 (2009)

    Article  Google Scholar 

  50. Frijda, N.H.: Emotions and action. In: Manstead, A.S.R., Frijda, N., Fischer, A. (eds.) Feelings and Emotions, pp. 158–173. Cambridge University Press, Cambridge (2004)

    Chapter  Google Scholar 

  51. Berkowitz, L.: The Causes and Consequences of Feelings. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  52. Russell, J.A.: Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145–172 (2003)

    Article  Google Scholar 

  53. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  54. Thelen, E., Schöner, G., Scheier, C., Smith, L.: The dynamics of embodiment: a dynamic field theory of infant perseverative reaching. Behav. Brain Sci. 24, 1–86 (2001)

    Article  Google Scholar 

  55. Bechara, A., Damasio, A.R., Damasio, H., Anderson, S.W.: Insensitivity to future consequences following damage to human pre-frontal cortex. Cognition 50, 7–15 (1994)

    Article  Google Scholar 

  56. Lowe, R., Ziemke, T.: Towards a cognitive robotics methodology for reward-based decision-making: dynamical systems modelling of the Iowa Gambling Task. Connect. Sci. 22, 247–289 (2010)

    Article  Google Scholar 

  57. Lowe, R., Duran, B., Ziemke, T.: A dynamic field theoretic model of Iowa gambling task performance. In: IEEE 9th International Conference on Development and Learning (ICDL), Michigan, pp. 297–304 (2010)

    Google Scholar 

  58. Lowe, R., Ziemke, T.: Exploring the relationship of reward and punishment in reinforcement learning. In: Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2013 IEEE Symposium, pp. 140–147 (2013)

    Google Scholar 

  59. Doya, K.: Metalearning and neuromodulation. Neur. Net. 15, 495–506 (2002)

    Article  Google Scholar 

  60. Broekens, J.: Affect and Learning: A Computational Analysis. Ph.D. thesis, University of Leiden (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lowe, R., Kiryazov, K. (2014). Utilizing Emotions in Autonomous Robots: An Enactive Approach. In: Bosse, T., Broekens, J., Dias, J., van der Zwaan, J. (eds) Emotion Modeling. Lecture Notes in Computer Science(), vol 8750. Springer, Cham. https://doi.org/10.1007/978-3-319-12973-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12973-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12972-3

  • Online ISBN: 978-3-319-12973-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics