Advertisement

Yield Design of Periodically Heterogeneous Plates

  • Jeremy BleyerEmail author
  • Duc Toan Pham
  • Patrick de Buhan
  • Céline Florence
Chapter

Abstract

This work addresses the determination of the overall strength capacities of periodically heterogeneous plates within a yield design framework. Illustrative applications focus, notably, on reinforced concrete slabs in fire conditions. A homogenization procedure and related numerical tools are proposed to compute macroscopic strength criteria expressed in terms of generalized forces (membrane and bending solicitations). To this end, a yield design auxiliary problem is formulated on the representative three-dimensional unit cell and a numerical resolution by a static approach is presented, making use of simple 3D equilibrium finite elements. A particular emphasis is put on the link between the local strength criterion of steel and concrete and the resulting optimization problem, which can be formulated, either as a second-order cone programming (SOCP) problem or, more generally, as a semi-definite programming (SDP) problem. A first illustrative example of a concrete slab with a single array of steel bars will be used to validate the approach. Then, the influence of fire conditions on the strength capacities of reinforced concrete slabs will be investigated and numerical computations will be confronted to experimental results.

References

  1. 1.
    Suquet P (1985) Homogenization techniques for composite media.  272:193Google Scholar
  2. 2.
    de Buhan P (1986) A fundamental approach to the yield design of reinforced soil structures, PhD thesis, Thèse d’Etat, Paris VIGoogle Scholar
  3. 3.
    Maghous S (1991) Détermination du critère de résistance macroscopique d’un matériau hétérogène à structure périodique. Approche numérique. These, Ecole Nationale des Ponts et Chaussées. http://tel.archives-ouvertes.fr/tel-00529369
  4. 4.
    Marigo JJ, Mialon P, Michel JC, Suquet P (1987) J de Mécanique Théorique et Appliquée 6(1):47zbMATHGoogle Scholar
  5. 5.
    Pastor J, Turgeman S (1983) J de Mécanique Théorique et Appliquée 2:393zbMATHGoogle Scholar
  6. 6.
    Turgeman S, Pastor J (1987) J de Mécanique Théorique et Appliquée 6(1):121zbMATHGoogle Scholar
  7. 7.
    Francescato P, Pastor J (1998) Revue Européenne des Éléments Finis 7(4):421Google Scholar
  8. 8.
    Sab K (2003) Comptes Rendus Mecanique 331(9):641CrossRefzbMATHGoogle Scholar
  9. 9.
    Hassen G, Gueguin M, de Buhan P (2013) Eur J Mech—A/Solids 37:266. doi: 10.1016/j.euromechsol.2012.07.003 CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bisbos C, Pardalos P (2007) J Optim Theory Appl 134(2):275CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Krabbenhøft K, Lyamin A, Sloan S (2007) Int J Solids Struct 44(5):1533CrossRefGoogle Scholar
  12. 12.
    Makrodimopoulos A (2010) Int J Numer Methods Biomed Eng 26(11):1449CrossRefzbMATHGoogle Scholar
  13. 13.
    Mosek (2008) The Mosek optimization toolbox for MATLAB manual. http://www.mosek.com/
  14. 14.
    Salençon J (1983) Calcul à la rupture et analyse limite. Presses de l’Ecole Nationale des Ponts et Chaussées, ParisGoogle Scholar
  15. 15.
    Salençon J (2013) Yield design. Wiley, HobokenCrossRefGoogle Scholar
  16. 16.
    Bleyer J, de Buhan P (2014) Int J Solids Struct 28 (in press). http://dx.doi.org/10.1016/j.ijsolstr.2014.03.018
  17. 17.
    Bourgeois S (1997) Modélisation numérique des panneaux structuraux légers, PhD thesis, Université d’Aix-Marseille 2, FranceGoogle Scholar
  18. 18.
    Dallot J, Sab K (2008) J Mech Phys Solids 56(2):561Google Scholar
  19. 19.
    de Buhan P, Taliercio A (1991) Eur J Mech—A/Solids 10(2):129Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jeremy Bleyer
    • 1
    Email author
  • Duc Toan Pham
    • 1
    • 2
  • Patrick de Buhan
    • 1
  • Céline Florence
    • 2
  1. 1.Laboratoire Navier, Ecole des Ponts ParisTech-IFSTTAR-CNRS (UMR 8205)Université Paris-EstChamps-sur-MarneFrance
  2. 2.Centre Scientifique et Technique du Bâtiment (CSTB)Marne-la-Vallée Cedex 2France

Personalised recommendations