Skip to main content

A New Starting Point Strategy for Shakedown Analysis

  • Chapter
  • First Online:
Direct Methods for Limit and Shakedown Analysis of Structures

Abstract

Shakedown analysis is currently implemented by the coupling of finite element methods with techniques of computational optimization. Engineering structures problems contain a large number of variables and constraints, leading to large-scale nonlinear programming problems, since, usually, nonlinear yield criteria are preferred. The respective algorithms use iterative techniques to solve the problem at hand and the selection of a starting point is of crucial importance for their performance. To this goal the elastic limit solution could be applied, which yields a feasible point, since the zero residual stress identically satisfies the null space conditions. The present study proposes a mechanically motivated, simple technique to obtain an initial feasible point with nonzero residual stresses starting from the plastic shakedown analysis. The residual stresses obtained by this problem are generally infeasible and they are projected into the null space of the equilibrium conditions in order to yield a feasible set of self-equilibrating nonzero stresses. Next, this feasible point is completed by a safety factor, obtained from a one-dimensional optimization problem of elastic limit type. The applicability and appropriateness of this approach is studied by numerical comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Arch Appl Mech 9:116–126

    MATH  Google Scholar 

  2. König JA (1987) Shakedown of elastic-plastic structures. Elsevier, Amsterdam

    Google Scholar 

  3. Weichert D, Maier G (eds) (2000) Inelastic analysis of structures under variable repeated loads. Kluwer Academic, Dordrecht

    Google Scholar 

  4. Weichert D, Ponter ARS (eds) (2009) Limit states of materials and structures: direct methods. Springer, Wien

    Google Scholar 

  5. Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57

    Article  MATH  MathSciNet  Google Scholar 

  6. Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11:625–653

    Article  MathSciNet  Google Scholar 

  7. Toh KC, Todd MJ, Tütüncü RH (1999) SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optim Methods Softw 11(1–4):545–581

    Google Scholar 

  8. Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program 95(2):249–277

    Article  MATH  MathSciNet  Google Scholar 

  9. Christiansen E, Andersen KD (1999) Computation of collapse states with von Mises type yield condition. Int J Numer Methods Eng 46(8):1185–1202

    Article  MATH  MathSciNet  Google Scholar 

  10. Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech-A/Solids 24(5):800–819

    Article  MATH  Google Scholar 

  11. Bisbos CD, Makrodimopoulos A, Pardalos PM (2005) Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim Methods Softw 20(1):25–52

    Article  MATH  MathSciNet  Google Scholar 

  12. Krabbenhøft K, Lyamin AV, Sloan SW (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44(5):1533–1549

    Article  Google Scholar 

  13. Skordeli MA, Bisbos CD (2010) Limit and shakedown analysis of 3d steel frames via approximate ellipsoidal yield surfaces. Eng Struct 32(6):1556–1567

    Article  Google Scholar 

  14. Nikolaou K, Skordeli MA-A, Bisbos CD (2013) Limit analysis of aluminium frames via  approximate ellipsoidal yield surfaces. In: 10th HSTAM international congress on mechanics, Chania

    Google Scholar 

  15. Simon J-W, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods App Mech Eng 200(41):2828–2839

    Article  MATH  MathSciNet  Google Scholar 

  16. Simon J-W, Kreimeier M, Weichert D (2013) A selective strategy for shakedown analysis of engineering structures. Int J Numer Methods Eng 94:985–1014. doi:10.1002/nme.4476

    Article  MathSciNet  Google Scholar 

  17. Simon J-W, Höwer D, Weichert D (2013) A starting point strategy for interior-point algorithms for shakedown analysis of engineering structures. Eng Optim ISSN:1029–0207. doi:10.1080/0305215X.2013.791816

  18. Akoa F, Hachemi A, Said M, Tao PD (2007) Application of lower bound direct method to engineering structures. J Glob Optim 37(4):609–630

    Article  MATH  Google Scholar 

  19. Hachemi A, Mouhtamid S, Tao P (2004) Large-scale nonlinear programming and lower bound direct method in engineering applications. In: Modelling, computation and optimization in information systems and management sciences. Hermes Sciences, London, pp 299–310

    Google Scholar 

  20. Zouain N, Herskovits J, Borges LA, Feijóo RA (1993) An iterative algorithm for limit analysis with nonlinear yield functions. Int J Solids Struct 30(10):1397–1417

    Article  MATH  Google Scholar 

  21. Lyamin AV, Sloan SW (2002) Lower bound limit analysis using non-linear programming. Int J Numer Methods Eng 55(5):573–611

    Article  MATH  Google Scholar 

  22. Krabbenhoft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626

    Article  MATH  MathSciNet  Google Scholar 

  23. Pastor F, Loute E (2005) Solving limit analysis problems: an interior-point method. Commun Numer Methods Eng 21(11):631–642

    Article  MATH  MathSciNet  Google Scholar 

  24. Vu DK, Yan AM, Nguyen-Dang H (2004) A primal-dual algorithm for shakedown analysis of structures. Comput Methods Appl Mech Eng 193(42):4663–4674

    Article  MATH  Google Scholar 

  25. Vu DK, Staat M, Tran IT (2007) Analysis of pressure equipment by application of the primal-dual theory of shakedown. Commun Numer Methods Eng 23(3):213–225

    Article  MATH  Google Scholar 

  26. Bisbos CD, Pardalos PM (2007) Second-order cone and semidefinite representations of material failure criteria. J Optim Theory Appl 134(2):275–301

    Article  MATH  MathSciNet  Google Scholar 

  27. Skordeli MA-A (2010) Shakedown analysis of metal structures subjected to ellipsoidal variable repeated loading via robust optimization techniques. PhD Dissertation, Aristotle University of Thessaloniki

    Google Scholar 

  28. Bisbos CD, Ampatzis AT (2008) Shakedown analysis of spatial frames with parameterized load domain. Eng Struct 30(11):3119–3128

    Article  Google Scholar 

  29. Yildirim EA, Wright SJ (2002) Warm-start strategies in interior-point methods for linear programming. SIAM J Optim 12(3):782–810

    Article  MATH  MathSciNet  Google Scholar 

  30. Gertz M, Nocedal J, Sartenar AA (2004) Starting point strategy for nonlinear interior methods. Appl Math Lett 17(8):945–952

    Article  MATH  MathSciNet  Google Scholar 

  31. Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2(4):575–601

    Article  MATH  MathSciNet  Google Scholar 

  32. Stojković NV, Stanimirović PS (2001) Initial point in primal-dual interior point method. Facta Universitatis-Series: Mech Autom Control Robot 3(11):219–222

    MATH  Google Scholar 

  33. Castillo E, García-Bertrand R, Mínguez R (2006) Decomposition techniques in mathematical programming: engineering and science applications. Springer, Berlin

    Google Scholar 

  34. Belytschko T (1972) Plane stress shakedown analysis by finite elements. Int J Mech Sci 14(9):619–625

    Article  Google Scholar 

  35. Hamilton R, Boyle JT, Shi J, Mackenzie D (1996) Shakedown load bounds by elastic finite element analysis. ASME Press Vessel Pip Div Publ PVP 343:205–211

    Google Scholar 

  36. Groß-Weege J (1997) On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int J Mech Sci 39(4):417–433

    Google Scholar 

  37. Muscat M, Mackenzie D, Hamilton R (2003) Evaluating shakedown under proportional loading by nonlinear static analysis. Comput Struct 81(17):1727–1737

    Article  Google Scholar 

  38. Zhang X, Liu Y, Cen Z (2004) Boundary element methods for lower bound limit and shakedown analysis. Eng Anal Bound Elem 28(8):905–917

    Article  MATH  Google Scholar 

  39. Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and nonlinear programming. Comput Methods Appl Mech Eng 197(45):3911–3921

    Article  MATH  Google Scholar 

  40. Zhang W, Yang LF, Fu CX, Wang J (2012) Evaluating shakedown for structures based on the element bearing-ratio. Appl Mech Mater 137:16–23

    Article  Google Scholar 

  41. Zouain N, Borges L (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech Eng 191(23):2463–2481

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author would like to thank DAAD for granting a short stay research scholarship at the Institute of General Mechanics (IAM) of RWTH-Aachen University, IAM for the hospitality and especially the head of IAM Prof. B. Markert for financially supporting the trip to Italy. Special thanks to Dr. Hachemi, Dr. Chen and MSc G.Chen from IAM and Dr Skordeli from Aristotle University Thessaloniki, for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Nikolaou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nikolaou, K., Bisbos, C.D., Weichert, D., Simon, J.W. (2015). A New Starting Point Strategy for Shakedown Analysis. In: Fuschi, P., Pisano, A., Weichert, D. (eds) Direct Methods for Limit and Shakedown Analysis of Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-12928-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12928-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12927-3

  • Online ISBN: 978-3-319-12928-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics