Advertisement

On the Statistical Determination of Yield Strength, Ultimate Strength, and Endurance Limit of a Particle Reinforced Metal Matrix Composite (PRMMC)

  • Geng ChenEmail author
  • Utku Ahmet Ozden
  • Alexander Bezold
  • Christoph Broeckmann
  • Dieter Weichert
Chapter

Abstract

In this paper we present a numerical methodology to determine the load bearing capacity of a random heterogeneous material. It is applied to a particulate reinforced metal matrix composite (PRMMC), WC-30 Wt.% Co, to predict its strength against both monotonic and cyclic loads. In this approach, limit and shakedown analysis based on Melan’s static theorem [30] is performed on representative volume element (RVE) models generated from real material microstructure and the obtained results are converted to macroscopic load domains through homogenization. To evaluate microstructure’s impact on the overall material strength, the relationship between strength and composite structure is investigated by means of statistics. Meanwhile, several numerical issues, e.g. the impact of RVE’s size, mesh density, as well as the discrepancy between 2D and 3D models, are studied.

Keywords

PRMMC Shakedown Statistical RVE Homogenization Melan’s theorem 

References

  1. 1.
    ABAQUS (2012) ABAQUS/CAE user’s manual: version 6.12. Simulia, Dassault SystèmesGoogle Scholar
  2. 2.
    Akoa F, Hachemi A, An L, Said M, Tao P (2007) Application of lower bound direct method to engineering structures. J Glob Optim 37(4):609–630CrossRefzbMATHGoogle Scholar
  3. 3.
    Barrera O, Cocks A, Ponter A (2011) The linear matching method applied to composite materials: a micromechanical approach. Compos Sci Technol 71(6):797–804CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bisbos C, Makrodimopoulos A, Pardalos P (2005) Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim Methods Softw 20(1):25–52CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Böhm HJ, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25(1):42–53Google Scholar
  6. 6.
    Carvelli V (2004) Shakedown analysis of unidirectional fiber reinforced metal matrix composites. Comput Mater Sci 31(1–2):24–32CrossRefGoogle Scholar
  7. 7.
    Chawla N, Habel U, Shen YL, Andres C, Jones J, Allison J (2000) The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites. Metall Mater Trans A 31(2):531–540CrossRefGoogle Scholar
  8. 8.
    Chen G, Ozden U, Bezold A, Broeckmann C (2013) A statistics based numerical investigation on the prediction of elasto-plastic behavior of WC-Co hard metal. Comput Mater Sci 80:96–103CrossRefGoogle Scholar
  9. 9.
    Chen H, Ponter A (2005) On the behaviour of a particulate metal matrix composite subjected to cyclic temperature and constant stress. Comput Mater Sci 34(4):425–441CrossRefGoogle Scholar
  10. 10.
    Chen M, Hachemi A (2014) Progress in plastic design of composites. In: Spiliopoulos K, Weichert D (eds) Direct methods for limit states in structures and materials. Springer, Netherlands, pp 119–138CrossRefGoogle Scholar
  11. 11.
    Chen M, Hachemi A, Weichert D (2013) Shakedown and optimization analysis of periodic composites. In: Saxcé G, Oueslati A, Charkaluk E, Tritsch JB (eds) Limit state of materials and structures. Springer, Netherlands, pp 45–69CrossRefGoogle Scholar
  12. 12.
    Van Dang K, Griveau B, Message O (1989) On a new multiaxial fatigue limit criterion: theory and application. In: Brown M, Miller K (eds) Biaxial and multiaxial fatigue, EGF 3. Mechanical Engineering Publication, London, pp 479–496Google Scholar
  13. 13.
    Drucker D (1963) On the macroscopic theory of inelastic stress-strain-time-temperature behavior. In: AGARD advances in material researchs in the NATO Nations, pp 193–221Google Scholar
  14. 14.
    Drugan W, Willis J (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    El-Bakry A, Tapia R, Tsuchiya T, Zhang Y (1996) On the formulation and theory of the Newton interior-point method for nonlinear programming. J Optim Theory Appl 89(3):507–541CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fleming W, Temis J (2002) Numerical simulation of cyclic plasticity and damage of an aluminium metal matrix composite with particulate SiC inclusions. Int J Fatigue 24(10):1079–1088Google Scholar
  17. 17.
    Friend C (1987) The effect of matrix properties on reinforcement in short alumina fibre-aluminium metal matrix composites. J Mater Sci 22(8):3005–3010CrossRefGoogle Scholar
  18. 18.
    Garcea G, Leonetti L (2009) Numerical methods for the evaluation of the shakedown and limit loads. In: 7th EUROMECH solid mechanics conference, Lisbon, PortugalGoogle Scholar
  19. 19.
    Gurobi Optimization I (2014) Gurobi optimizer reference manual. http://www.gurobi.com
  20. 20.
    Ibrahim I, Mohamed F, Lavernia E (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156CrossRefGoogle Scholar
  21. 21.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13):3647–3679CrossRefzbMATHGoogle Scholar
  22. 22.
    Karmarkar N (1984) A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th annual ACM symposium on theory of computing. ACM, pp 302–311Google Scholar
  23. 23.
    Koiter W (1956) A new general theorem on shake-down of elastic-plastic structures. In: Proceeding of eighth international congress of applied mechanics, pp 220–230Google Scholar
  24. 24.
    König J (1987) Shakedown of elastic-plastic structures. Fundamental Studies in Engineering. Elsevier, WarsawGoogle Scholar
  25. 25.
    Krabbenhoft K, Lyamin A, Sloan S, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Methods Eng 69(3):592–626CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Li H (2013) A microscopic nonlinear programming approach to shakedown analysis of cohesivefrictional composites. Compos Part B-Eng 50:32–43CrossRefGoogle Scholar
  27. 27.
    Magoariec H, Bourgeois S, Débordes O (2004) Elastic plastic shakedown of 3D periodic heterogeneous media: a direct numerical approach. Int J Plast 20(8–9):1655–1675CrossRefzbMATHGoogle Scholar
  28. 28.
    Maier G (2001) On some issues in shakedown analysis. J Appl Mech 68(5):799–808CrossRefzbMATHGoogle Scholar
  29. 29.
    MATLAB (2010) Version 7.10.0 (R2010a). The MathWorks Inc, NatickGoogle Scholar
  30. 30.
    Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Arch Appl Mech 9(2):116–126zbMATHGoogle Scholar
  31. 31.
    Nguyen AD, Hachemi A, Weichert D (2008) Application of the interior-point method to shakedown analysis of pavements. Int J Numer Methods Eng 75(4):414–439CrossRefzbMATHGoogle Scholar
  32. 32.
    Ozden UA, Chen G, Bezold A, Broeckmann C (2014) Numerical investigation on the size effect of a WC/Co 3D representative volume element based on the homogenized elasto-plastic response and fracture energy dissipation. Key Eng Mater 592:153–156CrossRefGoogle Scholar
  33. 33.
    Pastor F, Loute E (2005) Solving limit analysis problems: an interior-point method. Commun Numer Methods Eng 21(11):631–642CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Sadowski T, Nowicki T (2008) Numerical investigation of local mechanical properties of WC/Co composite. Comput Mater Sci 43(1):235–241CrossRefGoogle Scholar
  35. 35.
    Schwabe F (2000) Einspieluntersuchungen von Verbundwerkstoffen mit periodischer Mikrostruktur. PhD thesis, RWTH AachenGoogle Scholar
  36. 36.
    Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50(10):2107–2121CrossRefzbMATHGoogle Scholar
  37. 37.
    Simon JW, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech 200(41):2828–2839CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Suquet P (1987) Homogenization techniques for composite media. In: Sanchez-Palencia E, Zaoui A (eds) Introduction, Lecture Notes in Physics, vol 272. Springer, Berlin, pp 193–198Google Scholar
  39. 39.
    Swaminathan S, Ghosh S, Pagano N (2006) Statistically equivalent representative volume elements for unidirectional composite microstructures: part I-without damage. J Compos Mater 40(7):583–604CrossRefGoogle Scholar
  40. 40.
    Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New YorkCrossRefGoogle Scholar
  41. 41.
    Wächter A, Biegler L (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Weichert D, Hachemi A, Schwabe F (1999) Application of shakedown analysis to the plastic design of composites. Arch Appl Mech 69(9–10):623–633CrossRefzbMATHGoogle Scholar
  43. 43.
    Wright M (2005) The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bull Am Math Soc 42(1):39–56CrossRefzbMATHGoogle Scholar
  44. 44.
    You JH, Kim B, Miskiewicz M (2009) Shakedown analysis of fibre-reinforced copper matrix composites by direct and incremental approaches. Mech Mater 41(7):857–867CrossRefGoogle Scholar
  45. 45.
    Zhang H, Liu Y, Xu B (2009) Plastic limit analysis of ductile composite structures from micro- to macro-mechanical analysis. Acta Mech Solida Sin 22(1):73–84CrossRefMathSciNetGoogle Scholar
  46. 46.
    Zohdi T, Wriggers P (2008) An introduction to computational micromechanics. Springer, New YorkGoogle Scholar
  47. 47.
    Zouain N, Borges L, Silveira JL (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech 191(23–24):2463–2481CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Geng Chen
    • 1
    Email author
  • Utku Ahmet Ozden
    • 1
  • Alexander Bezold
    • 1
  • Christoph Broeckmann
    • 1
  • Dieter Weichert
    • 2
  1. 1.Institute of Materials Application in Mechanical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Institute of General MechanicsRWTH Aachen UniversityAachenGermany

Personalised recommendations