Advertisement

A Direct Method Formulation for Topology Plastic Design of Continua

  • Zied Kammoun
  • Hichem SmaouiEmail author
Chapter

Abstract

In the present paper a method is proposed for continuous and black and white topology optimization of continuum structures subject to static and plastic admissibility conditions relative to a prescribed load. A significant feature of the continuous topology optimization problem is its outstanding similarity with the direct static formulation of the limit analysis problem that can be written as a conic programming problem. The discrete, e.i. black and white, topology optimization problem is derived by simply introducing a penalization of intermediate densities in the objective function and is solved as a sequence of conic programming problems of the same form as the continuous design problem. The proposed method is formulated in plane strain using Tresca materials and is illustrated on continuous and discrete example design problems taken from the literature.

Keywords

Discrete topology Optimization Limit analysis 

References

  1. 1.
    Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654Google Scholar
  2. 2.
    Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review*. Appl Mech Rev 54(4):331–390CrossRefGoogle Scholar
  3. 3.
    Allaire G (2007) Conception optimale de structures, mathématiques and applications, vol 58Google Scholar
  4. 4.
    Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Browne PA (2013) Topology optimization of linear elastic structures. PhD thesis, Department of Mathematical Sciences, University of BathGoogle Scholar
  6. 6.
    Duddeck F (2011) New approaches for shape and topology optimization for crashworthiness. In: NAFEMS world congress. Ecole Centrale de Lille, France, May 2011Google Scholar
  7. 7.
    Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  8. 8.
    Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202CrossRefGoogle Scholar
  9. 9.
    Woo TH, Schmit LA (1981) Decomposition in optimal plastic design of structures. Int J Solids Struct 17(1):39–56CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kammoun Z, Smaoui H (2013) A direct method formulation for topology plastic design of continua. In: 4th international workshop on direct methods—DM2013. University Mediterranea of Reggio Calabria, Italy, 1–2 October 2013Google Scholar
  11. 11.
    Kammoun Z, Smaoui H (2014) A direct approach for continuous topology optimization subject to plastically admissible loading. Comptes Rendus Mécanique, submitted April 2014Google Scholar
  12. 12.
    Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91CrossRefzbMATHGoogle Scholar
  13. 13.
    Yuge K, Kikuchi N (1995) Optimization of a frame structure subjected to a plastic deformation. Struct Optim 10(3–4):197–208CrossRefGoogle Scholar
  14. 14.
    Salençon J (1967) Théorie des charges limites: poinçonnement d’une plaque par deux poinçons symétriques en déformation plane. Comptes Rendus, Acad Sci Paris, 265:869–872Google Scholar
  15. 15.
    Salençon J (1974) Théorie de la plasticité pour les applications à la mécanique des sols. Eyrolles, PariszbMATHGoogle Scholar
  16. 16.
    Pastor J (1978) Analyse limite: détermination numérique de solutions statiques complètes. Application au talus vertical. J Méca Appl (now Eur J Mech—A/Solids) 2:167–196Google Scholar
  17. 17.
    MOSEK ApS (2002) C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen \(\phi \), Denmark. www.mosek.com
  18. 18.
    Kammoun Z, Pastor F, Smaoui H, Pastor J (2010) Large static problem in numerical limit analysis: a decomposition approach. Int J Num Anal Methods Geomech 34:1960–1980CrossRefzbMATHGoogle Scholar
  19. 19.
    Kammoun Z, Pastor J, Smaoui H (2013) Limit analysis of a soil reinforced by micropile group: a decomposition approach. In: Limit state of materials and structures, Springer, pp 179–195Google Scholar
  20. 20.
    Pastor F, Kammoun Z, Loute E, Pastor J, Smaoui H (2009) Large problems in numerical limit analysis: a decomposition approach. In: Limit states of materials and structures, Springer, pp 23–43Google Scholar
  21. 21.
    Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRefzbMATHGoogle Scholar
  22. 22.
    Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Chapman CD, Jakiela MJ (1996) Genetic algorithm-based structural topology design with compliance and topology simplification considerations. J Mech Des 118(1):89–98CrossRefGoogle Scholar
  24. 24.
    Garcia-Lopez NP, Sanchez-Silva M, Medaglia AL, Chateauneuf A (2013) An improved robust topology optimization approach using multiobjective evolutionary algorithms. Comput Struct 125:1–10CrossRefGoogle Scholar
  25. 25.
    Hillestad RJ, Jacobsen SE (1980) Reverse convex programming. Appl Math Optim 6(1):63–78CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Jacobsen SE, Moshirvaziri K (1996) Computational experience using an edge search algorithm for linear reverse convex programs. J Glob Optim 9(2):153–167CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Zakhama R (2009) Multigrid implementation of cellular automata for topology optimisation of continuum structures with design dependent loads. PhD thesis, TUDelft, Faculteit Luchtvaart-en RuimtevaarttechiekGoogle Scholar
  28. 28.
    Duysinx P (1996) Optimisation topologique: du milieu continu à la structure élastique. PhD thesis, Université de LiègeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Ecole Nationale D’Ingénieurs de Tunis, LR11ES16 Laboratoire de Matériaux, Optimisation et Energie pour la DurabilitéUniversité de Tunis El ManarTunisTunisie

Personalised recommendations