Advertisement

Limit Analysis and Macroscopic Strength of Porous Materials with Coulomb Matrix

  • Franck Pastor
  • Djimedo Kondo
  • Joseph PastorEmail author
Chapter

Abstract

The paper is devoted to the numerical Limit Analysis of a hollow spheroidal model with a Coulomb solid matrix. In a first part the hollow spheroid model is presented, together with its axisymmetric FEM discretization and its mechanical position. Then, after an adaptation of a previous static code, an original mixed (but fully kinematic) approach dedicated to the axisymmetric problem was elaborated with a specific quadratic velocity field associated to the triangular finite element. Despite the less good conditioning inherent to the axisymmetric modelization, the final conic mixed code appears very efficient, allowing to take into account numerical meshes highly refined. After a first validation in the case of spherical cavities and isotropic loadings, for which the exact solution is known, numerical bounds of the macroscopic strength are provided for both cases of spherical and spheroidal voids. Effects of the friction angle as well as that of the void aspect ratio are fully illustrated.

Keywords

Friction Angle Spherical Void Coulomb Criterion Plasticity Criterion Average Stress Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderheggen E, Knopfel H (1972) Finite element limit analysis using linear programming. Int J Solids Struct 8:1413–1431CrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Tal A, Nemirovskii A (2001) Lectures on modern convex optimization. Analysis, algorithms and engineering applications. Series on Optimization. SIAM-MPSGoogle Scholar
  3. 3.
    Byer J (2000) XA, optimisation library. Sunset Software Technology. San MarinoGoogle Scholar
  4. 4.
    Francescato P, Pastor J, Riveill-Reydet B (2004) Ductile failure of cylindrically porous materials. Part I: plane stress problem and experimental results. Eur J Mech/A Solids 23:181–190CrossRefzbMATHGoogle Scholar
  5. 5.
    Garajeu M, Suquet P (1997) Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles. J Mech Phys Solids 45:873–902CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Gologanu M, Leblond JB (1993) Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41(11):1723–1754CrossRefzbMATHGoogle Scholar
  7. 7.
    Gologanu M, Leblond JB, Perrin G, Devaux J (1994) Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities. J Eng Mater Technol 116:290–297CrossRefGoogle Scholar
  8. 8.
    Guo TF, Faleskog J, Shih CF (2008) Continuum modeling of a porous solid with pressure sensitive dilatant matrix. J Mech Phys Solids 56:2188–2212CrossRefzbMATHGoogle Scholar
  9. 9.
    Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth—part I: yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15CrossRefGoogle Scholar
  10. 10.
    Krabbenhoft K, Lyamin AV, Hijaj M, Sloan SW (2005) A new discontinuous upper bound limit analysis formulation. Int J Numer Methods Eng 63:1069–1088CrossRefzbMATHGoogle Scholar
  11. 11.
    Lee JH, Oung J (2000) Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials. J Appl Mech 67:288–297CrossRefzbMATHGoogle Scholar
  12. 12.
    MOSEK ApS. (2010) C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen \(\phi \), Denmark, http://www.mosek.com
  13. 13.
    Makrodimopoulos A, Martin CM (2007) Upper bound limit analysis using simplex strain elements and second-order cone programming. Int J Numer Anal Methods Geomech 31(6):835–865CrossRefzbMATHGoogle Scholar
  14. 14.
    Makrodimopoulos A, Martin CM (2008) Upper bound limit analysis using discontinuous quadratic displacement fields. Commun Numer Methods Eng 24:911–927CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Monchiet V, Charkaluk E, Kondo D (2007) An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields. C R Mécanique 335:32–41CrossRefzbMATHGoogle Scholar
  16. 16.
    Monchiet V, Charkaluk E, Kondo D (2013) Macroscopic yield criteria for ductile materials containing spheroidal voids: an Eshelby-like velocity fields approach. Mech Mater http://dx.doi.org/10.1016/j.mechmat.2013.05.006
  17. 17.
    Pastor F (2007) Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l’analyse limite. Thèse de doctorat, Facultés universitaires Notre-Dame de la Paix, NamurGoogle Scholar
  18. 18.
    Pastor F, Kondo D (2014) Limit analysis and lower/upper bounds to the macroscopic criterion of Drucker-Prager materials with spheroidal voids. C R Mecanique 342:96–105CrossRefGoogle Scholar
  19. 19.
    Pastor F, Kondo D, Pastor J (2013) 3D-FEM formulations of limit analysis methods for porous pressure-sensitive materials. Int J Numer Methods Eng 95:847–870CrossRefMathSciNetGoogle Scholar
  20. 20.
    Pastor F, Loute E, Pastor J, Trillat M (2009) Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach. Eur J Mech-A/Solids 28:25–35CrossRefzbMATHGoogle Scholar
  21. 21.
    Pastor F, Kondo D (2013) Assessment of hollow spheroid models for ductile failure prediction by limit analysis and conic programming. Eur J Mech A/Solids 38:100–114CrossRefMathSciNetGoogle Scholar
  22. 22.
    Pastor J, Turgeman S (1982) Limit analysis in axisymmetrical problems: numerical determination of complete statical solutions. Int J Mech Sci 24:95–117CrossRefzbMATHGoogle Scholar
  23. 23.
    Pastor J, Francescato P, Trillat M, Loute E, Rousselier G (2004) Ductile failure of cylindrically porous materials. Part II: other cases of symmetry. Eur J Mech/A Solids 23:191–201CrossRefzbMATHGoogle Scholar
  24. 24.
    Pastor J, Thoré Ph, Pastor F (2010) Limit analysis and numerical modeling of spherically porous solids with Coulomb and Drucker-Prager matrices. J Comput Appl Math 234:2162–2174CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Salençon J (1983) Calcul à la rupture et analyse limite. Presses des Ponts et Chaussées, ParisGoogle Scholar
  26. 26.
    Sloan SW (2013) Geotechnical stability analysis. Géotechnique 63:531–572CrossRefGoogle Scholar
  27. 27.
    Thai-The H, Francescato P, Pastor J (1998) Limit analysis of unidirectional porous media. Mech Res Commun 25:535–542CrossRefzbMATHGoogle Scholar
  28. 28.
    Thoré P, Pastor F, Pastor J (2011) Hollow sphere models, conic programming and third stress invariant. Eur J Mech/A Solids 30:63–71CrossRefzbMATHGoogle Scholar
  29. 29.
    Thoré Ph, Pastor F, Pastor J, Kondo D (2009) Closed form solutions for the hollow sphere model with Coulomb and Drucker-Prager materials under isotropic loadings. C R Mécanique Acad Sci Paris 337:260–267CrossRefzbMATHGoogle Scholar
  30. 30.
    Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A/Solids 24:800–819CrossRefzbMATHGoogle Scholar
  31. 31.
    Turgeman S, Pastor J (1982) Limit analysis: a linear formulation of the kinematic approach for axisymmetric mechanic problems. Int J Numer Anal Methods Geomech 6:109–128CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Athénée Royal Victor HortaBruxellesBelgium
  2. 2.Institut D’AlembertUniversité P. M CurieParisFrance
  3. 3.Laboratoire LOCIEUniversité de SavoieLe Bourget du LacFrance

Personalised recommendations