Advertisement

Limit Analysis on RC-Structures by a Multi-yield-criteria Numerical Approach

  • Aurora Angela PisanoEmail author
  • Paolo Fuschi
  • Dario De Domenico
Chapter

Abstract

The present study proposes a multi-yield-criteria limit analysis numerical procedure for the prediction of peak loads and failure modes of reinforced concrete (RC) elements. The proposed procedure, which is a generalization of a previous one recently presented by the authors, is hereafter applied to structural elements reinforced either with traditional steel bars and stirrups or with fiber reinforced polymer (FRP) sheets used as strengthening system. The procedure allows to take into account the actual behaviour, at a state of incipient collapse, of steel, FRP and concrete by a finite element (FE) based plasticity approach where concrete is governed by a Menétrey-Willam-type yield criterion, FRP reinforcement obey to a Tsai-Wu-type yield criterion and steel reinforcement follow the von Mises yield criterion. To check the effectiveness and reliability of the numerically detected peak loads and failure modes a comparison with experimental laboratory findings, available in literature for large-scale specimens, is presented.

Keywords

Limit analysis Multi-yield-criteria Reinforced concrete structures 

References

  1. 1.
    Almusallam TH, Al-Salloum YA (2005) Use of glass FRP sheets as external flexure reinforcement in RC beams. Department of Civil Engineering, King Saud University, pp 1–15Google Scholar
  2. 2.
    American Concrete Institute ACI 440 (2008) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, ACI 440.2R-08Google Scholar
  3. 3.
    Bažant ZP (1986) Mechanics of distributed cracking. Appl Mech Rev 39:675–705CrossRefGoogle Scholar
  4. 4.
    Bresler B, Scordelis AC (1963) Shear strength of reinforced concrete beams. J Am Concr Inst 60(1):51–72Google Scholar
  5. 5.
    Chen WF (1982) Plasticity in reinforced concrete. McGraw-HillGoogle Scholar
  6. 6.
    Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157–165zbMATHMathSciNetGoogle Scholar
  7. 7.
    De Domenico D (2014) RC members strengthened with externally bonded FRP plates: a FE-based limit analysis approach. Compos Part B: Eng http://dx.doi.org/10.1016/j.compositesb.2014.11.013
  8. 8.
    De Domenico D, Pisano AA, Fuschi P (2014) A FE-based limit analysis approach for concrete elements reinforced with FRP bars. Compos Struct 107:594–603CrossRefGoogle Scholar
  9. 9.
    FIB Bulletin 14 (2001) Externally bonded FRP reinforcement for RC structures. Task group 9.3. International Federation of Structural ConcreteGoogle Scholar
  10. 10.
    Fuschi P (1999) Structural shakedown for elastic-plastic materials with hardening saturation surface. Int J Solids Struct 36:219–240CrossRefzbMATHGoogle Scholar
  11. 11.
    Le CV, Nguyen-Xuan H, Nguyen-Dang H (2010) Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput Struct 88:65–73CrossRefGoogle Scholar
  12. 12.
    Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech ASCE 124:892–900CrossRefGoogle Scholar
  13. 13.
    Li T, Crouch R (2010) A \(C_{2}\) plasticity model for structural concrete. Comput Struct 88:1322–1332CrossRefGoogle Scholar
  14. 14.
    Limam O, Foret G, Ehrlacher A (2003) RC two-way slabs strengthened with CFRP strips: experimental study and a limit analysis approach. Compos Struct 60:467–471CrossRefGoogle Scholar
  15. 15.
    Lubliner J, Oliver J, Oller S, Oñate E (2010) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326CrossRefGoogle Scholar
  16. 16.
    Mackenzie D, Boyle JT (1993) A method of estimating limit loads by iterative elastic analysis, Parts I, II, III. Int J Press Vessel Pip 77:77–142Google Scholar
  17. 17.
    Menétrey P, Willam KJ (1995) A triaxial failure criterion for concrete and its generalization. ACI Struct J 92:311–318Google Scholar
  18. 18.
    Pisano AA, Fuschi P (2007) A numerical approach for limit analysis of orthotropic composite laminates. Int J Numer Methods Eng 70:71–93CrossRefzbMATHGoogle Scholar
  19. 19.
    Pisano AA, Fuschi P, De Domenico D (2012) A layered limit analysis of pinned-joints composite laminates: numerical versus experimental findings. Compos: Part B 43:940–952CrossRefGoogle Scholar
  20. 20.
    Pisano AA, Fuschi P, De Domenico D (2013) A kinematic approach for peak load evaluation of concrete elements. Comput Struct 119:125–139Google Scholar
  21. 21.
    Pisano AA, Fuschi P, De Domenico D (2013) Peak load prediction of multi-pin joints FRP laminates by limit analysis. Compos Struct 96:763–772Google Scholar
  22. 22.
    Pisano AA, Fuschi P, De Domenico D (2013) Peak loads and failure modes of steel-reinforced concrete beams: predictions by limit analysis. Eng Struct 56:477–488Google Scholar
  23. 23.
    Pisano AA, Fuschi P, De Domenico D (2014) Limit state evaluation of steel-reinforced concrete elements by von-Mises and Menétrey-Willam-type yield criteria. Int J Appl Mech 6(5):140058 (24 pages) Imperial College Press. doi: 10.1142/S1758825114500586
  24. 24.
    Ponter ARS, Carter KF (1997) Limit state solutions, based upon linear elastic solutions with spatially varying elastic modulus. Comput Methods Appl Mech Eng 140:237–258CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Ponter ARS, Fuschi P, Engelhardt M (2000) Limit analysis for a general class of yield conditions. Eur J Mech/A Solids 19:401–421CrossRefzbMATHGoogle Scholar
  26. 26.
    Prager W (1959) An introduction to plasticity. Addison-Wesley, ReadingzbMATHGoogle Scholar
  27. 27.
    Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12:61–77CrossRefzbMATHGoogle Scholar
  28. 28.
    Spiliopoulos K, Weichert D (2013) Direct methods for limit states in structures and materials. Springer Science+Business Media B.V., DordrechtGoogle Scholar
  29. 29.
    Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5:58–80CrossRefGoogle Scholar
  30. 30.
    Zhang J, Zhang Z, Chen C (2010) Yield criterion in plastic-damage models for concrete. Acta Mech Solida Sin 23(3):220–230CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aurora Angela Pisano
    • 1
    Email author
  • Paolo Fuschi
    • 1
  • Dario De Domenico
    • 1
  1. 1.Department of PAU - via MelissariUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly

Personalised recommendations