Skip to main content

Limit Analysis on RC-Structures by a Multi-yield-criteria Numerical Approach

  • Chapter
  • First Online:
Direct Methods for Limit and Shakedown Analysis of Structures

Abstract

The present study proposes a multi-yield-criteria limit analysis numerical procedure for the prediction of peak loads and failure modes of reinforced concrete (RC) elements. The proposed procedure, which is a generalization of a previous one recently presented by the authors, is hereafter applied to structural elements reinforced either with traditional steel bars and stirrups or with fiber reinforced polymer (FRP) sheets used as strengthening system. The procedure allows to take into account the actual behaviour, at a state of incipient collapse, of steel, FRP and concrete by a finite element (FE) based plasticity approach where concrete is governed by a Menétrey-Willam-type yield criterion, FRP reinforcement obey to a Tsai-Wu-type yield criterion and steel reinforcement follow the von Mises yield criterion. To check the effectiveness and reliability of the numerically detected peak loads and failure modes a comparison with experimental laboratory findings, available in literature for large-scale specimens, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almusallam TH, Al-Salloum YA (2005) Use of glass FRP sheets as external flexure reinforcement in RC beams. Department of Civil Engineering, King Saud University, pp 1–15

    Google Scholar 

  2. American Concrete Institute ACI 440 (2008) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, ACI 440.2R-08

    Google Scholar 

  3. Bažant ZP (1986) Mechanics of distributed cracking. Appl Mech Rev 39:675–705

    Article  Google Scholar 

  4. Bresler B, Scordelis AC (1963) Shear strength of reinforced concrete beams. J Am Concr Inst 60(1):51–72

    Google Scholar 

  5. Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill

    Google Scholar 

  6. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157–165

    MATH  MathSciNet  Google Scholar 

  7. De Domenico D (2014) RC members strengthened with externally bonded FRP plates: a FE-based limit analysis approach. Compos Part B: Eng http://dx.doi.org/10.1016/j.compositesb.2014.11.013

  8. De Domenico D, Pisano AA, Fuschi P (2014) A FE-based limit analysis approach for concrete elements reinforced with FRP bars. Compos Struct 107:594–603

    Article  Google Scholar 

  9. FIB Bulletin 14 (2001) Externally bonded FRP reinforcement for RC structures. Task group 9.3. International Federation of Structural Concrete

    Google Scholar 

  10. Fuschi P (1999) Structural shakedown for elastic-plastic materials with hardening saturation surface. Int J Solids Struct 36:219–240

    Article  MATH  Google Scholar 

  11. Le CV, Nguyen-Xuan H, Nguyen-Dang H (2010) Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput Struct 88:65–73

    Article  Google Scholar 

  12. Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech ASCE 124:892–900

    Article  Google Scholar 

  13. Li T, Crouch R (2010) A \(C_{2}\) plasticity model for structural concrete. Comput Struct 88:1322–1332

    Article  Google Scholar 

  14. Limam O, Foret G, Ehrlacher A (2003) RC two-way slabs strengthened with CFRP strips: experimental study and a limit analysis approach. Compos Struct 60:467–471

    Article  Google Scholar 

  15. Lubliner J, Oliver J, Oller S, Oñate E (2010) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  16. Mackenzie D, Boyle JT (1993) A method of estimating limit loads by iterative elastic analysis, Parts I, II, III. Int J Press Vessel Pip 77:77–142

    Google Scholar 

  17. Menétrey P, Willam KJ (1995) A triaxial failure criterion for concrete and its generalization. ACI Struct J 92:311–318

    Google Scholar 

  18. Pisano AA, Fuschi P (2007) A numerical approach for limit analysis of orthotropic composite laminates. Int J Numer Methods Eng 70:71–93

    Article  MATH  Google Scholar 

  19. Pisano AA, Fuschi P, De Domenico D (2012) A layered limit analysis of pinned-joints composite laminates: numerical versus experimental findings. Compos: Part B 43:940–952

    Article  Google Scholar 

  20. Pisano AA, Fuschi P, De Domenico D (2013) A kinematic approach for peak load evaluation of concrete elements. Comput Struct 119:125–139

    Google Scholar 

  21. Pisano AA, Fuschi P, De Domenico D (2013) Peak load prediction of multi-pin joints FRP laminates by limit analysis. Compos Struct 96:763–772

    Google Scholar 

  22. Pisano AA, Fuschi P, De Domenico D (2013) Peak loads and failure modes of steel-reinforced concrete beams: predictions by limit analysis. Eng Struct 56:477–488

    Google Scholar 

  23. Pisano AA, Fuschi P, De Domenico D (2014) Limit state evaluation of steel-reinforced concrete elements by von-Mises and Menétrey-Willam-type yield criteria. Int J Appl Mech 6(5):140058 (24 pages) Imperial College Press. doi:10.1142/S1758825114500586

  24. Ponter ARS, Carter KF (1997) Limit state solutions, based upon linear elastic solutions with spatially varying elastic modulus. Comput Methods Appl Mech Eng 140:237–258

    Article  MATH  MathSciNet  Google Scholar 

  25. Ponter ARS, Fuschi P, Engelhardt M (2000) Limit analysis for a general class of yield conditions. Eur J Mech/A Solids 19:401–421

    Article  MATH  Google Scholar 

  26. Prager W (1959) An introduction to plasticity. Addison-Wesley, Reading

    MATH  Google Scholar 

  27. Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12:61–77

    Article  MATH  Google Scholar 

  28. Spiliopoulos K, Weichert D (2013) Direct methods for limit states in structures and materials. Springer Science+Business Media B.V., Dordrecht

    Google Scholar 

  29. Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5:58–80

    Article  Google Scholar 

  30. Zhang J, Zhang Z, Chen C (2010) Yield criterion in plastic-damage models for concrete. Acta Mech Solida Sin 23(3):220–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Angela Pisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pisano, A.A., Fuschi, P., De Domenico, D. (2015). Limit Analysis on RC-Structures by a Multi-yield-criteria Numerical Approach. In: Fuschi, P., Pisano, A., Weichert, D. (eds) Direct Methods for Limit and Shakedown Analysis of Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-12928-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12928-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12927-3

  • Online ISBN: 978-3-319-12928-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics