Skip to main content

Patterned Photostimulation in the Brain

  • Chapter
  • First Online:
New Techniques in Systems Neuroscience

Abstract

Photostimulation has been instrumental in the past two decades for studying the structural synaptic plasticity and functional connectivity of neuronal circuits. With the advent of optogenetic strategies, this approach has been further expanded and used to identify the neuronal substrates of behavior via monitoring and modulating the activity of specific neuronal types in vivo. To date, however, photostimulation has been mainly implemented via full-field illumination and laser scanning protocols, which suffer from limited selectivity and stop short of generating asynchronous and spatially distributed neuronal firing patterns, characteristic for brain activity.

In this chapter, we discuss advances in using novel light patterning techniques which allow shaping illumination to create flexible spatiotemporal photostimulation profiles over large ensembles of neurons, as well as onto subcellular compartments. Specifically, we describe two light patterning strategies implemented through intensity and phase modulation, respectively. We illustrate the underlying physical principles, their applications to date, and the scope and limitations of each method, in an attempt to bridge the gap between the development of optical techniques and their use for neuroscience experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuste, R., Konnerth, A., & Masters, B. R. (2006). Imaging in neuroscience and development, a laboratory manual. Journal of Biomedical Optics, 11, 019902.

    ADS  Google Scholar 

  2. Looger, L. L., & Griesbeck, O. (2012). Genetically encoded neural activity indicators. Current Opinion in Neurobiology, 22, 18–23.

    Google Scholar 

  3. Stosiek, C., Garaschuk, O., Holthoff, K., & Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 7319–7324.

    ADS  Google Scholar 

  4. Minta, A., Kao, J. P. Y., & Tsien, R. Y. (1989). Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. The Journal of Biological Chemistry, 264, 8171–8178.

    Google Scholar 

  5. Hochbaum, D. R., et al. (2014). All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods, 11, 825–833. doi:10.1038/nmeth.3000.

    Google Scholar 

  6. St-Pierre, F., et al. (2014). High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nature Neuroscience, 17, 884–889.

    Google Scholar 

  7. Jin, L., et al. (2012). Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron, 75, 779–785.

    Google Scholar 

  8. Trachtenberg, J. T., et al. (2002). Long-term in-vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420, 788–794.

    ADS  Google Scholar 

  9. Grutzendler, J., Kasthuri, N., & Gan, W. B. (2002). Long-term dendritic spine stability in the adult cortex. Nature, 420, 812–816.

    ADS  Google Scholar 

  10. Svoboda, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1997). In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature, 385, 161–165.

    ADS  Google Scholar 

  11. Helmchen, F., Svoboda, K., Denk, W., & Tank, D. W. (1999). In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neuroscience, 2, 989–996.

    Google Scholar 

  12. Euler, T., Detwiler, P. B., & Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature, 418, 845–852.

    ADS  Google Scholar 

  13. Charpak, S., Mertz, J., Beaurepaire, E., Moreaux, L., & Delaney, K. (2001). Odor-evoked calcium signals in dendrites of rat mitral cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 1230–1234.

    ADS  Google Scholar 

  14. Branco, T., & Häusser, M. (2011). Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron, 69, 885–892.

    Google Scholar 

  15. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P., & Reid, R. C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.

    ADS  Google Scholar 

  16. Ohki, K., et al. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442, 925–928.

    ADS  Google Scholar 

  17. Hofer, S. B., et al. (2011). Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nature Neuroscience, 14, 1045–1052.

    Google Scholar 

  18. Ko, H., et al. (2011). Functional specificity of local synaptic connections in neocortical networks. Nature, 473, 87–91.

    ADS  Google Scholar 

  19. Komiyama, T., et al. (2010). Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature, 464, 1182–1186.

    ADS  Google Scholar 

  20. Petreanu, L., et al. (2012). Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature, 489, 299–303.

    ADS  Google Scholar 

  21. Orger, M. B., Kampff, A. R., Severi, K. E., Bollmann, J. H., & Engert, F. (2008). Control of visually guided behavior by distinct populations of spinal projection neurons. Nature Neuroscience, 11, 327–333.

    Google Scholar 

  22. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci, 100(24), 13940–13945.

    Google Scholar 

  23. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 1263–1268.

    Google Scholar 

  24. Zhang, F., et al. (2011). The microbial opsin family of optogenetic tools. Cell, 147, 1446–1457.

    Google Scholar 

  25. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., & Deisseroth, K. (2011). Optogenetics in neural systems. Neuron, 71, 9–34.

    Google Scholar 

  26. Aravanis, A. M., et al. (2007). An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering, 4, 143–156.

    ADS  Google Scholar 

  27. Cardin, J. A., et al. (2010). Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols, 5, 247–254.

    Google Scholar 

  28. Packer, A. M., Roska, B., & Häusser, M. (2013). Targeting neurons and photons for optogenetics. Nature Neuroscience, 16, 805–815.

    Google Scholar 

  29. Papagiakoumou, E. (2013). Optical developments for optogenetics. Biology of the Cell/Under the Auspices of the European Cell Biology Organization, 105, 443–464.

    Google Scholar 

  30. Shepherd, G. M. G., Pologruto, T. A., & Svoboda, K. (2003). Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron, 38, 277–289.

    Google Scholar 

  31. Shoham, S., O’Connor, D. H., Sarkisov, D. V., & Wang, S. S.-H. (2005). Rapid neurotransmitter uncaging in spatially defined patterns. Nature Methods, 2, 837–843.

    Google Scholar 

  32. Bureau, I., von Saint Paul, F. & Svoboda, K. (2006). Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biology, 4, e382.

    Google Scholar 

  33. Gasparini, S., & Magee, J. C. (2006). State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 26, 2088–2100.

    Google Scholar 

  34. Branco, T., Clark, B. A., & Häusser, M. (2010). Dendritic discrimination of temporal input sequences in cortical neurons. Science, 329, 1671–1675.

    ADS  Google Scholar 

  35. Callaway, E. M., & Katz, L. C. (1993). Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proceedings of the National Academy of Sciences of the United States of America, 90, 7661–7665.

    ADS  Google Scholar 

  36. Wang, H., et al. (2007). High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 8143–8148.

    ADS  Google Scholar 

  37. Petreanu, L., Huber, D., Sobczyk, A., & Svoboda, K. (2007). Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neuroscience, 10, 663–668.

    Google Scholar 

  38. Petreanu, L., Mao, T., Sternson, S. M., & Svoboda, K. (2009). The subcellular organization of neocortical excitatory connections. Nature, 457, 1142–1145.

    ADS  Google Scholar 

  39. Glickfeld, L. L., Andermann, M. L., Bonin, V., & Reid, R. C. (2013). Cortico-cortical projections in mouse visual cortex are functionally target specific. Nature Neuroscience, 16, 219–226.

    Google Scholar 

  40. Bonin, V., Histed, M. H., Yurgenson, S., & Reid, R. C. (2011). Local diversity and fine-scale organization of receptive fields in mouse visual cortex. The Journal of Neuroscience, 31, 18506–18521.

    Google Scholar 

  41. Bullen, A., Patel, S. S., & Saggau, P. (1997). High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophysical Journal, 73, 477–491.

    ADS  Google Scholar 

  42. Salomé, R., et al. (2006). Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. Journal of Neuroscience Methods, 154, 161–174.

    Google Scholar 

  43. Losavio, B. E., Iyer, V., Patel, S., & Saggau, P. (2010). Acousto-optic laser scanning for multi-site photo-stimulation of single neurons in vitro. Journal of Neural Engineering, 7, 045002.

    ADS  Google Scholar 

  44. Katona, G., et al. (2012). Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nature Methods, 9, 201–208.

    Google Scholar 

  45. Rickgauer, J. P., & Tank, D. W. (2009). Two-photon excitation of channelrhodopsin-2 at saturation. Proceedings of the National Academy of Sciences of the United States of America, 106, 15025–15030.

    ADS  Google Scholar 

  46. Berndt, A., et al. (2011). High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America, 108, 7595–7600.

    ADS  Google Scholar 

  47. Oron, D., Papagiakoumou, E., Anselmi, F., & Emiliani, V. (2012). Two-photon optogenetics. Progress in Brain Research, 196, 119–143.

    Google Scholar 

  48. Grossman, N., et al. (2010). Multi-site optical excitation using ChR2 and micro-LED array. Journal of Neural Engineering, 7, 16004.

    ADS  Google Scholar 

  49. Liu, J., et al. (2014). Random nanolasing in the Anderson localized regime. Nature Nanotechnology, 9, 285–289.

    ADS  Google Scholar 

  50. James, E. L. (2011). Fifty shades of grey. New York: Vintage Books.

    Google Scholar 

  51. Bansal, V., & Saggau, P. (2013). Digital micromirror devices: Principles and applications in imaging. Cold Spring Harbor Protocols, 2013, 404–411.

    Google Scholar 

  52. Wang, S., et al. (2007). All optical interface for parallel, remote, and spatiotemporal control of neuronal activity. Nano letters, 7, 3859–3863.

    ADS  Google Scholar 

  53. Farah, N., Reutsky, I., & Shoham, S. (2007). Patterned optical activation of retinal ganglion cells. Conference Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 6368–6370.

    Google Scholar 

  54. Wyart, C., et al. (2009). Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature, 461, 407–410.

    ADS  Google Scholar 

  55. Warp, E., et al. (2012). Emergence of patterned activity in the developing zebrafish spinal cord. Current Biology, 22, 93–102.

    Google Scholar 

  56. Guo, Z. V, Hart, A. C., & Ramanathan, S. (2009). Optical interrogation of neural circuits in Caenorhabditis elegans. Nature Methods, 6, 891–896.

    Google Scholar 

  57. Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J., & Samuel, A. D. T. (2011). Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nature Methods, 8, 147–152.

    Google Scholar 

  58. Shipley, F. B., Clark, C. M., Alkema, M. J., & Leifer, A. M. (2014). Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans. Frontiers in Neural Circuits, 8, 28.

    Google Scholar 

  59. Dhawale, A. K., Hagiwara, A., Bhalla, U. S., Murthy, V. N., & Albeanu, D. F. (2010). Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nature Neuroscience, 13, 1404–1412.

    Google Scholar 

  60. Haddad, R., et al. (2013). Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nature Neuroscience, 16, 949–957.

    Google Scholar 

  61. Blumhagen, F., et al. (2011). Neuronal filtering of multiplexed odour representations. Nature, 479, 493–498.

    ADS  Google Scholar 

  62. Zhu, P., Frank, T., & Friedrich, R. W. (2013). Equalization of odor representations by a network of electrically coupled inhibitory interneurons. Nature Neuroscience, 16, 1678–1686.

    Google Scholar 

  63. Trigo, F. F., Papageorgiou, G., Corrie, J. E. T., & Ogden, D. (2009). Laser photolysis of DPNI-GABA, a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ. Journal of Neuroscience Methods, 181, 159–169.

    Google Scholar 

  64. Zipfel, W. R., Williams, R. M., & Webb, W. W. (2003). Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnology, 21, 1369–1377.

    Google Scholar 

  65. Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2, 932–940.

    Google Scholar 

  66. Lutz, C., et al. (2008). Holographic photolysis of caged neurotransmitters. Nature Methods, 5, 821–827.

    MathSciNet  Google Scholar 

  67. Nikolenko, V., et al. (2008). SLM microscopy: Scanless two-photon imaging and photostimulation with spatial light modulators. Frontiers in Neural Circuits, 2, 5.

    Google Scholar 

  68. Curtis, J. E., Koss, B. A., & Grier, D. G. (2002). Dynamic holographic optical tweezers. Optics Communications, 207, 169–175.

    ADS  Google Scholar 

  69. Di Leonardo, R., Ianni, F., & Ruocco, G. (2007). Computer generation of optimal holograms for optical trap arrays. Optics Express, 15, 1913–1922.

    ADS  Google Scholar 

  70. Spalding, G. C., Courtial, J., & Leonardo, R. Di. (Academic Press, 2008). Holographic optical tweezers. In D. L. Andrews (Ed.), Structured Light and Its Applications, ( pp. 139–168).

    Google Scholar 

  71. Golan, L., Reutsky, I., Farah, N., & Shoham, S. (2009). Design and characteristics of holographic neural photo-stimulation systems. Journal of Neural Engineering, 6, 066004.

    ADS  Google Scholar 

  72. Maschio, M. D. (2014). Novel approaches for single molecule activation and detection. 7–26. doi:10.1007/978-3-662-43367-6.

    Google Scholar 

  73. Botcherby, E. J., Juškaitis, R., Booth, M. J., & Wilson, T. (2008). An optical technique for remote focusing in microscopy. Optics Communications, 281, 880–887.

    ADS  Google Scholar 

  74. Reicherter, M., Haist, T., Wagemann, E. U., & Tiziani, H. J. (1999). Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Optics Letters, 24, 608–610.

    ADS  Google Scholar 

  75. Lesem, L. B., Hirsch, P. M., & Jordan, J. A. (1969). The kinoform: A new wavefront reconstruction device. IBM Journal of Research and Developement, 13, 150–155.

    Google Scholar 

  76. Gerchberg, R. W., & Saxton, W. O. (1972). A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237–246.

    Google Scholar 

  77. Yang, S., et al. (2011). Three-dimensional holographic photostimulation of the dendritic arbor. Journal of Neural Engineering, 8, 046002.

    ADS  Google Scholar 

  78. Mahajan, V. N. (2011). Optical imaging and aberrations: Part II. Bellingham: SPIE. doi:10.1117/3.415727.

    Google Scholar 

  79. Wyrowski, F., & Bryngdahl, O. (1988). Iterative Fourier-transform algorithm applied to computer holography. Journal of the Optical Society of America A, 5, 1058.

    ADS  Google Scholar 

  80. Anselmi, F., Ventalon, C., Begue, A., Ogden, D., & Emiliani, V. (2011). Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proceedings of the National Academy of Sciences of the United States of America, 108, 19504–19509.

    ADS  Google Scholar 

  81. Papagiakoumou, E., de Sars, V., Oron, D., & Emiliani, V. (2008). Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Optics Express, 16, 22039–22047.

    Google Scholar 

  82. Zahid, M., et al. (2010). Holographic photolysis for multiple cell stimulation in mouse hippocampal slices. PLoS ONE, 5, e9431.

    ADS  Google Scholar 

  83. Papagiakoumou, E., et al. (2010). Scanless two-photon excitation of channelrhodopsin-2. Nature Methods, 7, 848–854.

    Google Scholar 

  84. Bègue, A., et al. (2013). Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation. Biomedical Optics Express, 4, 2869–2879.

    Google Scholar 

  85. Ambs, P., Otón, J., Millán, M. S., & Jaulin, A. (2007). Spatial light modulators for information processing: Applications and overview. AIP Conference Proceedings 949, 226.

    Google Scholar 

  86. Ronzitti, E., Guillon, M., de Sars, V., & Emiliani, V. (2012). LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression. Optics Express, 20, 17843–17855.

    ADS  Google Scholar 

  87. Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J., & Charpak, S. (2001). Two-photon microscopy in brain tissue: Parameters influencing the imaging depth. Journal of Neuroscience Methods, 111, 29–37.

    Google Scholar 

  88. Beaurepaire, E., Oheim, M., & Mertz, J. (2001). Ultra-deep two-photon fuorescence excitation in turbid media. Optics Communications, 188, 25–29.

    ADS  Google Scholar 

  89. Papagiakoumou, E., et al. (2013). Functional patterned multiphoton excitation deep inside scattering tissue. Nature Photonics, 7, 274–278.

    ADS  Google Scholar 

  90. Oron, D., & Silberberg, Y. (2005). Spatiotemporal coherent control using shaped, temporally focused pulses. Optics Express, 13, 9903–9908.

    ADS  Google Scholar 

  91. Zhu, G., van Howe, J., Durst, M., Zipfel, W., & Xu, C. (2005). Simultaneous spatial and temporal focusing of femtosecond pulses. Optics Express, 13, 2153–2159.

    ADS  Google Scholar 

  92. Papagiakoumou, E., et al. (2010). Scanless two-photon excitation of channelrhodopsin-2. Nature Methods, 7, 848–854.

    Google Scholar 

  93. Packer, A. M., et al. (2012). Two-photon optogenetics of dendritic spines and neural circuits. Nature Methods, 9, 1202–1205.

    Google Scholar 

  94. Prakash, R., et al. (2012). Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nature Methods, 9, 1171–1179.

    Google Scholar 

  95. Polin, M., Ladavac, K., Lee, S.-H., Roichman, Y., & Grier, D. (2005). Optimized holographic optical traps. Optics Express, 13, 5831–5845.

    ADS  Google Scholar 

  96. Golan, L., & Shoham, S. (2009). Speckle elimination using shift-averaging in high-rate holographic projection. Optics Express, 17, 1330–1339.

    ADS  Google Scholar 

  97. Matar, S., Golan, L., & Shoham, S. (2011). Reduction of two-photon holographic speckle using shift-averaging. Optics Express, 19, 25891–25899.

    ADS  Google Scholar 

  98. Amako, J., Miura, H., & Sonehara, T. (1995). Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator. Applied Optics, 34, 3165–3171.

    ADS  Google Scholar 

  99. Jesacher A. (2008). Advanced shaping of light fields with cascaded spatial light modulators.PhD Thesis. Innsbruck Medical University.

    Google Scholar 

  100. Glückstad, J. (1996). Phase contrast image synthesis. Optics Communications, 130, 225–230.

    ADS  Google Scholar 

  101. Papagiakoumou, E., et al. (2010). Scanless two-photon excitation of channelrhodopsin-2. Nature Methods, 7, 848–854. doi:10.1038/nmeth.1505.

    Google Scholar 

  102. Theer, P., Hasan, M. T., & Denk, W. (2003). Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Optics Letters, 28, 1022–1024.

    ADS  Google Scholar 

  103. Dal Maschio, M., et al. (2010). Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Optics Express, 18, 18720–18731.

    ADS  Google Scholar 

  104. Emiliani, V., et al. (2005). Wave front engineering for microscopy of living cells. Optics Express, 13, 1395–1405.

    ADS  Google Scholar 

  105. Dal Maschio, M., De Stasi, A. M., Benfenati, F., & Fellin, T. (2011). Three-dimensional in vivo scanning microscopy with inertia-free focus control. Optics Letters, 36, 3503–3505.

    ADS  Google Scholar 

  106. Quirin, S., Jackson, J., Peterka, D. S., & Yuste, R. (2014). Simultaneous imaging of neural activity in three dimensions. Frontiers in Neural Circuits, 8, 29.

    Google Scholar 

  107. Botcherby, E. J., et al. (2012). Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proceedings of the National Academy of Sciences of the United States of America, 109, 2919–2924.

    ADS  Google Scholar 

  108. Kner, P., Sedat, J. W., Agard, D. A., & Kam, Z. (2010). High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing. Journal of Microscopy, 237, 136–147.

    MathSciNet  Google Scholar 

  109. Grewe, B. F., Voigt, F. F., van ’t Hoff, M., & Helmchen, F. (2011). Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomedical Optics Express, 2, 2035–2046.

    Google Scholar 

  110. Fahrbach, F. O., Voigt, F. F., Schmid, B., Helmchen, F., & Huisken, J. (2013). Rapid 3D light-sheet microscopy with a tunable lens. Optics Express, 21, 21010–21026.

    Google Scholar 

  111. Kirkby, P. A., Srinivas Nadella, K. M. N., & Silver, R. A. (2010). A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy. Optics Express, 18, 13721–13745.

    ADS  Google Scholar 

  112. Dufresne, E. R., Spalding, G. C., Dearing, M. T., Sheets, S. A., & Grier, D. G. (2000). Computer-generated holographic optical tweezer arrays. Review of Scientific Instruments, 72, 1810–1816.

    ADS  Google Scholar 

  113. Reutsky-Gefen, I., et al. (2013). Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nature Communications, 4, 1509.

    ADS  Google Scholar 

  114. Yang, S., et al. (2011). Three-dimensional holographic photostimulation of the dendritic arbor. Journal of Neural Engineering, 8, 046002.

    ADS  Google Scholar 

  115. Yang, S., Emiliani, V., & Tang, C.-M. (2014). The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons. Frontiers in Cellular Neuroscience, 8, 127.

    Google Scholar 

  116. Watson, B. O., et al. (2010). Two-photon microscopy with diffractive optical elements and spatial light modulators. Frontiers in Neuroscience, 4, 1–8.

    Google Scholar 

  117. Ducros, M., Goulam Houssen, Y., Bradley, J., de Sars, V., & Charpak, S. (2013). Encoded multisite two-photon microscopy. Proceedings of the National Academy of Sciences of the United States of America, 110, 13138–13143.

    ADS  Google Scholar 

Download references

Acknowledgement

We would like to thank Aurélien Bègue, Adriana ‘Dăbȃcan’, Priyanka Gupta, and Matthew Koh for constructive critique and comments. This work was supported by an EMBO Long-Term Fellowship and a Swartz Foundation Fellowship (FA), and CSHL start-up funds and a Louis and Gertrude Feil Foundation Fellowship (DFA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinu F. Albeanu .

Editor information

Editors and Affiliations

Glossary

Glossary

  1. 1.

    4f configuration : an optical configuration involving two lenses of focal length ‘f’. The object is placed at focal length distance from the first lens and the distance between the two lenses is 2f. This configuration ensures that the distance between the object and its image is 4f. Even when two lenses of different focal lengths are used (f1 and f2), the configuration is still commonly referred to as a 4f. system.

  2. 2.

    Absorption cross-section: a proportionality constant that determines the probability of a photon being absorbed by an absorber molecule. It has the units of area, which is why it is known as cross-section and can be imagined to be a perfectly absorbing disk of that area.

  3. 3.

    Collimated beam: a beam of light with near-zero divergence that propagates through a given medium. Lasers are highly collimated, but light from extended sources like lamps and LEDs is not.

  4. 4.

    Comb function: a periodic function composed of individual delta functions repeated at a particular interval. Also known as impulse train or sampling function in engineering. The Fourier transform of the comb function is another comb function with different periodicity.

  5. 5.

    Conjugate plane: if all points residing in a given plane P are imaged onto another plane P’ by a lens, then P and P’ are said to be conjugate planes of each other. In an optical system with more than one lens, changes in the amplitude or phase at any given plane propagate to all other conjugated planes.

  6. 6.

    Diffraction grating: an optical component with periodic variation of phase across the surface that causes constructive/destructive interference to produce characteristic diffraction patterns.

  7. 7.

    Diffraction-limited spot: the theoretical minimum spot size that can be achieved after focusing a coherent light beam using a lens. The size of the spot at the focal plane is proportional to the wavelength of light and inversely proportional to the numerical aperture of the lens. The function that describes the intensity distribution of a diffraction-limited spot in 3D is known as the point-spread function.

  8. 8.

    Focal plane: the point where rays parallel to the optical axis converge after passing through a lens is called the focus. The plane perpendicular to the optical axis containing the focus is called the focal plane (technically the front focal plane). Back focal plane refers to the image plane of an object placed at infinity and is located at a focal distance from the center of the lens, but symmetrically opposite from the front focal plane.

  9. 9.

    Gaussian spot: a spot generated by a Gaussian beam when focused, whose intensity profile can be fitted with 2D Gaussian function in the lateral plane.

  10. 10.

    Ghost-replicas: the higher-order diffraction patterns (low-intensity repeats) of a light mask when using a coherent light source.

  11. 11.

    LED (Light-emitting diodes): a small semiconductor device made up of a pn-junction diode that emits photons (whose energy correspond to the band gap) when an electric potential is applied.

  12. 12.

    Mean free path: the average distance travelled by light (photons) between successive collisions (scattering) in the propagating medium.

  13. 13.

    Rectangular (rect) function: a step function of a particular duration. Its Fourier transform is a sinc function, whose un-normalized form matches the diffracting pattern from a single-slit (rect function) experiment.

  14. 14.

    Temporal coherence: two waves are coherent if they have a constant phase difference between them. For light sources, it is a condition where all the individual light emitters (electron transitions in atoms at the source) have a constant phase difference between themselves, as is the case of LASERs.

  15. 15.

    Wavefront: the spatial envelope of all the points in a wave that have the same phase.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anselmi, F., Banerjee, A., Albeanu, D. (2015). Patterned Photostimulation in the Brain. In: Douglass, A. (eds) New Techniques in Systems Neuroscience. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12913-6_9

Download citation

Publish with us

Policies and ethics