Skip to main content

Optogenetics in Drosophila melanogaster

  • Chapter
  • First Online:
New Techniques in Systems Neuroscience

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2487 Accesses

Abstract

The increasing popularity of the fruit fly, Drosophila melanogaster, in systems neuroscience can be attributed to the widespread availability of powerful genetic reagents that make efforts at understanding its numerically simple brain tractable, revealing the neural basis of a rich repertoire of behaviors. These tools allow exogenous labels, indicators, activators, and inhibitors of neural activity to be expressed in sparse sets of identified neurons in the brain, enabling specific, targeted neural recording and manipulation. In particular, thermogenetic reagents for activation and silencing, such as dTrpA1 and Shibirets1, have helped researchers identify circuits involved in a range of fly behaviors. However, temperature-sensitive reagents are slow to activate, and induce complicated behavioral artifacts in ectothermic animals such as flies. Early optogenetic reagents, such as channelrhodopsin2 and halorhodopsin, enabled temporally precise neural perturbation and had an almost immediate impact on mammalian neuroscience. Their use in intact flies was, however, hindered by the fact that blue and green excitation light does not efficiently penetrate adult fly cuticle, and the use of high-intensity light introduces artifacts, such as increased body temperature and photoreceptor-triggered behavioral responses. In this article, we discuss advances in the use of optogenetics in flies, with a special emphasis on recently developed bistable opsins and red-activated channelrhodopsins, CsChrimson, and ReaChR. Using a combination of genetic tools and an appropriate light delivery strategy, these optogenetic reagents allow precise spatial and temporal manipulation of neural activity in the fly while minimizing thermally and visually induced artifacts. We also consider some applications of optogenetics in flies, including testing for the role of identified neurons in the brain of tethered and freely behaving flies and, in combination with genetically encoded calcium indicators, mapping coarse functional connectivity between specific neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrasfalvy, B. K., Zemelman, B. V., Tang, J., & Vaziri, A. (2010). Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proceedings of the National Academy of Sciences of the United States of America, 107, 11981–11986.

    ADS  Google Scholar 

  2. Arrenberg, A. B., Stainier, D. Y., Baier, H., & Huisken, J. (2010). Optogenetic control of cardiac function. Science, 330, 971–974.

    ADS  Google Scholar 

  3. Bamann, C., Gueta, R., Kleinlogel, S., Nagel, G., & Bamberg, E. (2010). Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry, 49, 267–278.

    Google Scholar 

  4. Bath, D. E., Stowers, J. R., Hormann, D., Poehlmann, A., Dickson, B. J., & Straw, A. D. (2014). FlyMAD: Rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nature Methods, 11, 756–762.

    Google Scholar 

  5. Bellmann, D., Richardt, A., Freyberger, R., Nuwal, N., Schwarzel, M., Fiala, A., & Stortkuhl, K. F. (2010). Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Frontiers in Behavioral Neuroscience, 4, 27

    Google Scholar 

  6. Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., & Deisseroth, K. (2009). Bi-stable neural state switches. Nature Neuroscience, 12, 229–234.

    Google Scholar 

  7. Berndt, A., Schoenenberger, P., Mattis, J., Tye, K. M., Deisseroth, K., Hegemann, P., & Oertner, T. G. (2011). High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America, 108, 7595–7600.

    ADS  Google Scholar 

  8. Bidaye, S. S., Machacek, C., Wu, Y., & Dickson, B. J. (2014). Neuronal control of Drosophila walking direction. Science, 344, 97–101.

    ADS  Google Scholar 

  9. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 1263–1268.

    Google Scholar 

  10. Brake, A. J., Wagenbach, M. J., & Julius, D. (1994). New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature, 371, 519–523.

    ADS  Google Scholar 

  11. Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.

    Google Scholar 

  12. Branson, K., Robie, A. A., Bender, J., Perona, P., & Dickinson, M. H. (2009). High-throughput ethomics in large groups of Drosophila. Nature Methods, 6, 451–457.

    Google Scholar 

  13. Callaway, E. M. (2008). Transneuronal circuit tracing with neurotropic viruses. Current Opinion in Neurobiology, 18, 617–623.

    Google Scholar 

  14. Chen, T. W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., Schreiter, E. R., Kerr, R. A., Orger, M. B., Jayaraman, V., Looger, L. L., Svoboda, K., & Kim, D. S. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295–300.

    ADS  Google Scholar 

  15. Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., Henninger, M. A., Belfort, G. M., Lin, Y., Monahan, P. E., & Boyden, E. S. (2010). High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature, 463, 98–102.

    ADS  Google Scholar 

  16. Chuong, A. S., Miri, M. L., Busskamp, V., Matthews, G. A., Acker, L. C., Sorensen, A. T., Young, A., Klapoetke, N. C., Henninger, M. A., Kodandaramaiah, S. B., Ogawa, M., Ramanlal, S. B., Bandler, R. C., Allen, B. D., Forest, C. R., Chow, B. Y., Han, X., Lin, Y., Tye, K. M., Roska, B., Cardin, J. A., & Boyden, E. S.. (2014). Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 17, 1123–1129.

    Google Scholar 

  17. de Vries S. E., & Clandinin TR. (2012). Loom-sensitive neurons link computation to action in the Drosophila visual system. Current Biology, 22, 353–362.

    Google Scholar 

  18. Dobzhansky, T., Judson, C. L., & Pavlovsky, O. (1974). Behavior in different environments of populations of Drosophila, pseudoobscura selected for phototaxis and geotaxis. Proceedings of the National Academy of Sciences of the United States of America, 71, 1974–1976.

    ADS  Google Scholar 

  19. Erbguth, K., Prigge, M., Schneider, F., Hegemann, P., & Gottschalk, A. (2012). Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS ONE, 7, e 46827.

    Google Scholar 

  20. Farah, N., Reutsky, I., & Shoham, S. (2007). Patterned optical activation of retinal ganglion cells. Conference proceedings:... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 6368–6370.

    Google Scholar 

  21. Fenno, L. E., Mattis, J., Ramakrishnan, C., Hyun, M., Lee, S. Y., He, M., Tucciarone, J., Selimbeyoglu, A., Berndt, A., Grosenick, L., Zalocusky, K. A., Bernstein, H., Swanson, H., Perry, C., Diester, I., Boyce, F. M., Bass, C. E., Neve, R., Huang, Z. J., & Deisseroth, K. (2014). Targeting cells with single vectors using multiple-feature Boolean logic. Nature Methods, 11, 763–772.

    Google Scholar 

  22. Fischer, J. A., Giniger, E., Maniatis, T., & Ptashne, M. (1988). GAL4 activates transcription in Drosophila. Nature, 332, 853–856.

    ADS  Google Scholar 

  23. Gallio, M., Ofstad, T. A., Macpherson, L. J., Wang, J. W., & Zuker, C. S. (2011). The coding of temperature in the Drosophila brain. Cell, 144, 614–624.

    Google Scholar 

  24. Gaudry, Q., Hong, E. J., Kain, J., de Bivort B. L., & Wilson, R. I. (2013). Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature, 493, 424–428.

    ADS  Google Scholar 

  25. Gordon, M. D., & Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron, 61, 373–384.

    Google Scholar 

  26. Gradinaru, V., Thompson, K. R., & Deisseroth, K. (2008). eNpHR: A Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biology, 36, 129–139.

    Google Scholar 

  27. Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson, K. R., & Deisseroth, K. (2010). Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 141, 154–165.

    Google Scholar 

  28. Gruntman, E., & Turner, G. C. (2013). Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nature Neuroscience, 16, 1821–1829.

    Google Scholar 

  29. Guo, Z. V., Hart, A. C., & Ramanathan, S. (2009). Optical interrogation of neural circuits in Caenorhabditis elegans. Nature Methods, 6, 891–896.

    Google Scholar 

  30. Haikala, V., Joesch, M., Borst, A., & Mauss, A. S. (2013). Optogenetic control of fly optomotor responses. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 13927–13934.

    Google Scholar 

  31. Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J., & Garrity, P. A. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature, 454, 217–220.

    ADS  Google Scholar 

  32. Han, D. D., Stein, D., & Stevens, L. M. (2000). Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development, 127, 573–583.

    Google Scholar 

  33. Hanai, S., Hamasaka, Y., & Ishida, N. (2008). Circadian entrainment to red light in Drosophila: Requirement of Rhodopsin 1 and Rhodopsin 6. Neuroreport, 19, 1441–1444.

    Google Scholar 

  34. Hardie, R. (1979). Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R 7 and 8. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 129, 19–33.

    Google Scholar 

  35. Hayashi, S., Ito, K., Sado, Y., Taniguchi, M., Akimoto, A., Takeuchi, H., Aigaki, T., Matsuzaki, F., Nakagoshi, H., Tanimura, T., Ueda, R., Uemura, T., Yoshihara, M., & Goto, S. (2002). GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis, 34, 58–61.

    Google Scholar 

  36. Herman, A. M., Huang, L., Murphey, D. K., Garcia, I., & Arenkiel, B. R. (2014). Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2. eLife, 3, e 01481.

    Google Scholar 

  37. Honjo, K., Hwang, R. Y., & Tracey, W. D., Jr. (2012). Optogenetic manipulation of neural circuits and behavior in Drosophila larvae. Nature Protocols, 7, 1470–1478.

    Google Scholar 

  38. Hu, A., Zhang, W., & Wang, Z. (2010). Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway. Proceedings of the National Academy of Sciences of the United States of America, 107, 10262–10267.

    ADS  Google Scholar 

  39. Huang, J., Zhang, W., Qiao, W., Hu, A., & Wang, Z. (2010). Functional connectivity and selective odor responses of excitatory local interneurons in Drosophila antennal lobe. Neuron, 67, 1021–1033.

    Google Scholar 

  40. Hwang, R. Y., Zhong, L., Xu, Y., Johnson, T., Zhang, F., Deisseroth, K., & Tracey, W. D. (2007). Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Current Biology: CB, 17, 2105–2116.

    Google Scholar 

  41. Inada, K., Kohsaka, H., Takasu, E., Matsunaga, T., & Nose, A. (2011). Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS ONE, 6, e 29019.

    Google Scholar 

  42. Inagaki, H. K., Ben-Tabou†de-Leon, S., Wong, A. M., Jagadish, S., Ishimoto, H., Barnea, G., Kitamoto, T., Axel, R., & Anderson, D. J. (2012). Visualizing neuromodulation in vivo: TANGO-Mapping of dopamine signaling reveals appetite control of sugar sensing. Cell, 148, 583–595.

    Google Scholar 

  43. Inagaki, H. K., Jung, Y., Hoopfer, E. D., Wong, A. M., Mishra, N., Lin, J. Y., Tsien, R. Y., & Anderson, D. J. (2014). Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature Methods, 11, 325–332.

    Google Scholar 

  44. Jenett, A., Rubin, G. M., Ngo, T. T., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B. D., Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J. H., Peng, H., Trautman, E. T., Svirskas, R. R., Myers, E. W., Iwinski, Z. R., Aso, Y., Depasquale, G. M., Enos, A., Hulamm, P., Lam, S. C., Li, H. H., Laverty, T. R., Long, F., Qu, L., Murphy, S. D., Rokicki, K., Safford, T., Shaw, K., Simpson, J. H., Sowell, A., Tae, S., Yu, Y., & Zugates, C. T. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell Reports, 2, 991–1001.

    Google Scholar 

  45. Jones, W. D., Cayirlioglu, P., Kadow, I. G., & Vosshall, L. B. (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature, 445, 86–90.

    ADS  Google Scholar 

  46. Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., & Branson, K. (2013). JAABA: Interactive machine learning for automatic annotation of animal behavior. Nature Methods, 10, 64–67.

    Google Scholar 

  47. Katzel, D., Zemelman, B. V., Buetfering, C., Wolfel, M., & Miesenbock, G. (2011). The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nature Neuroscience, 14, 100–107.

    Google Scholar 

  48. Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., Morimoto, T. K., Chuong, A. S., Carpenter, E. J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B. Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G. K., & Boyden, E. S. (2014). Independent optical excitation of distinct neural populations. Nature Methods, 11, 338–346.

    Google Scholar 

  49. Kvon, E. Z., Kazmar, T., Stampfel, G., Yanez-Cuna, J. O., Pagani, M., Schernhuber, K., Dickson, B. J., & Stark, A. (2014). Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature, 512, 91–95.

    ADS  Google Scholar 

  50. Kwon, J. Y., Dahanukar, A., Weiss, L. A., & Carlson, J. R. (2007). The molecular basis of CO2 reception in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 104, 3574–3578.

    ADS  Google Scholar 

  51. Lai, S. L., & Lee, T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nature Neuroscience, 9, 703–709.

    Google Scholar 

  52. Leifer, A. M., Fang-Yen, C., Gershow, M., Alkema, M. J., & Samuel, A. D. (2011). Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nature Methods, 8, 147–152.

    Google Scholar 

  53. Lima, S. Q., & Miesenbock, G. (2005). Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 121, 141–152.

    Google Scholar 

  54. Lin, J. Y. (2011). A user’s guide to channelrhodopsin variants: Features, limitations and future developments. Experimental Physiology, 96, 19–25.

    Google Scholar 

  55. Lin, H. H., Chu, L. A., Fu, T. F., Dickson, B. J., & Chiang, A. S. (2013). Parallel neural pathways mediate CO2 avoidance responses in Drosophila. Science, 340, 1338–1341.

    ADS  Google Scholar 

  56. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D., & Tsien, R. Y. (2013b). ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 16, 1499–1508.

    Google Scholar 

  57. Liu, W. W., & Wilson, R. I. (2013). Transient and specific inactivation of Drosophila neurons in vivo using a native ligand-gated ion channel. Current Biology: CB, 23, 1202–1208.

    Google Scholar 

  58. Losonczy, A., Zemelman, B. V., Vaziri, A., & Magee, J. C. (2010). Network mechanisms of theta related neuronal activity in hippocampal CA1 pyramidal neurons. Nature Neuroscience, 13, 967–972.

    Google Scholar 

  59. Lutz, C., Otis, T. S., DeSars, V., Charpak, S., DiGregorio, D. A., & Emiliani, V. (2008). Holographic photolysis of caged neurotransmitters. Nature Methods, 5, 821–827.

    Google Scholar 

  60. Madisen, L., Mao, T., Koch, H., Zhuo, J. M., Berenyi, A., Fujisawa, S., Hsu, Y. W., Garcia, A. J. 3rd, Gu, X., Zanella, S., Kidney, J., Gu, H., Mao, Y., Hooks, B. M., Boyden, E. S., Buzsaki, G., Ramirez, J. M., Jones, A. R., Svoboda, K., Han, X., Turner, E. E., & Zeng, H. (2012). A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nature Neuroscience, 15, 793–802.

    Google Scholar 

  61. Mattis, J., Tye, K. M., Ferenczi, E. A., Ramakrishnan, C., O’Shea, D. J., Prakash, R., Gunaydin, L. A., Hyun, M., Fenno, L. E., Gradinaru, V., Yizhar, O., & Deisseroth, K. (2012). Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods, 9, 159–172.

    Google Scholar 

  62. Maurer, C., Khan, S., Fassl, S., Bernet, S., & Ritsch-Marte, M. (2010). Depth of field multiplexing in microscopy. Optics Express, 18, 3023–3034.

    ADS  Google Scholar 

  63. Mauss, A. S., Meier, M., Serbe, E., & Borst, A. (2014). Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. The Journal of neuroscience: The Official Journal of the Society for Neuroscience, 34, 2254–2263.

    Google Scholar 

  64. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K., & Davis, R. L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science, 302, 1765–1768.

    ADS  Google Scholar 

  65. Minke, B., & Kirschfeld, K. (1979). The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. The Journal of General Physiology, 73, 517–540.

    Google Scholar 

  66. Mohanty, S. K., Reinscheid, R. K., Liu, X., Okamura, N., Krasieva, T. B., & Berns, M. W. (2008). In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophysical Journal, 95, 3916–3926.

    ADS  Google Scholar 

  67. Montell, C. (2009). A taste of the Drosophila gustatory receptors. Current Opinion in Neurobiology, 19, 345–353.

    Google Scholar 

  68. Nagel, G., Brauner, M., Liewald, J. F., Adeishvili, N., Bamberg, E., & Gottschalk, A. (2005). Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Current Biology: CB, 15, 2279–2284.

    Google Scholar 

  69. Nicholson, L., Singh, G. K., Osterwalder, T., Roman, G. W., Davis, R. L., & Keshishian, H. (2008). Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics, 178, 215–234.

    Google Scholar 

  70. Nikolenko, V., Watson, B. O., Araya, R., Woodruff, A., Peterka, D. S., & Yuste, R. (2008). SLM Microscopy: Scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits, 2, 5.

    Google Scholar 

  71. Nikolenko, V., Peterka, D. S., & Yuste, R. (2010). A portable laser photostimulation and imaging microscope. Journal of Neural Engineering, 7, 045001.

    ADS  Google Scholar 

  72. Nuwal, N., Stock, P., Hiemeyer, J., Schmid, B., Fiala, A., & Buchner, E. (2012). Avoidance of heat and attraction to optogenetically induced sugar sensation as operant behavior in adult Drosophila. Journal of Neurogenetics, 26, 298–305.

    Google Scholar 

  73. Ohyama, T., Jovanic, T., Denisov, G., Dang, T. C., Hoffmann, D., Kerr, R. A., & Zlatic, M. (2013). High-throughput analysis of stimulus-evoked behaviors in Drosophila larva reveals multiple modality-specific escape strategies. PLoS One, 8, e 71706.

    Google Scholar 

  74. Osterwalder, T., Yoon, K. S., White, B. H., & Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proceedings of the National Academy of Sciences of the United States of America, 98, 12596–12601.

    ADS  Google Scholar 

  75. Oztas, E. (2003). Neuronal tracing. Neuroanatomy, 2, 2–5.

    Google Scholar 

  76. Packer, A. M., Peterka, D. S., Hirtz, J. J., Prakash, R., Deisseroth, K., & Yuste, R. (2012). Two-photon optogenetics of dendritic spines and neural circuits. Nature Methods, 9, 1202–1205.

    Google Scholar 

  77. Papagiakoumou, E., Anselmi, F., Begue, A., de Sars V., Gluckstad, J., Isacoff, E. Y., & Emiliani, V. (2010). Scanless two-photon excitation of channelrhodopsin-2. Nature Methods, 7, 848–854.

    Google Scholar 

  78. Pfeiffer, B. D., Ngo, T. T., Hibbard, K. L., Murphy, C., Jenett, A., Truman, J. W., & Rubin, G. M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 186, 735–755.

    Google Scholar 

  79. Post, J. N., Lidke, K. A., Rieger, B., & Arndt-Jovin, D. J. (2005). One-and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Letters, 579, 325–330.

    Google Scholar 

  80. Prakash, R., Yizhar, O., Grewe, B., Ramakrishnan, C., Wang, N., Goshen, I., Packer, A. M., Peterka, D. S., Yuste, R., Schnitzer, M. J., & Deisseroth, K. (2012). Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nature Methods, 9, 1171–1179.

    Google Scholar 

  81. Prigge, M., Schneider, F., Tsunoda, S. P., Shilyansky, C., Wietek, J., Deisseroth, K., & Hegemann, P. (2012). Color-tuned channelrhodopsins for multiwavelength optogenetics. Journal of Biological Chemistry, 287, 31804–31812.

    Google Scholar 

  82. Pulver, S. R., Pashkovski, S. L., Hornstein, N. J., Garrity, P. A., & Griffith, L. C. (2009). Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. Journal of Neurophysiology, 101, 3075–3088.

    Google Scholar 

  83. Rickgauer, J. P., & Tank, D. W. (2009). Two-photon excitation of channelrhodopsin-2 at saturation. Proceedings of the National Academy of Sciences of the United States of America, 106, 15025–15030.

    ADS  Google Scholar 

  84. Roman, G., Endo, K., Zong, L., & Davis, R. L. (2001). P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 98, 12602–12607.

    ADS  Google Scholar 

  85. Sakai, S., Ueno, K., Ishizuka, T., & Yawo, H. (2013). Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector. Neuroscience Research, 75, 59–64.

    Google Scholar 

  86. Salcedo, E., Huber, A., Henrich, S., Chadwell, L. V., Chou, W. H., Paulsen, R., & Britt, S. G. (1999). Blue-and green-absorbing visual pigments of Drosophila: Ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19, 10716–10726.

    Google Scholar 

  87. Salomon, C. H., & Spatz, H. C. (1983). Colour vision in Drosophila melanogaster: Wavelength discrimination. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 150, 31–37.

    Google Scholar 

  88. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347–355.

    Google Scholar 

  89. Sayeed, O., & Benzer, S. (1996). Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 93, 6079–6084.

    ADS  Google Scholar 

  90. Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E., & Fiala, A.. (2006). Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Current Biology, 16, 1741–1747.

    Google Scholar 

  91. Schümperli, R. (1973). Evidence for colour vision inDrosophila melanogaster through spontaneous phototactic choice behaviour. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 86, 77–94.

    Google Scholar 

  92. Semmelhack, J. L., & Wang, J. W. (2009). Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature, 459, 218–223.

    ADS  Google Scholar 

  93. Simpson, J. H. (2009). Mapping and manipulating neural circuits in the fly brain. Advances in Genetics, 65, 79–143.

    Google Scholar 

  94. Suh, G. S., Wong, A. M., Hergarden, A. C., Wang, J. W., Simon, A. F., Benzer, S., Axel, R., & Anderson, D. J. (2004). A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature, 431, 854–859.

    ADS  Google Scholar 

  95. Suh, G. S., Ben-Tabou de Leon, S., Tanimoto, H., Fiala, A., Benzer, S., & Anderson, D. J. (2007). Light activation of an innate olfactory avoidance response in Drosophila. Current Biology: CB, 17, 905–908.

    Google Scholar 

  96. Szuts, D., & Bienz, M. (2000). LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. Proceedings of the National Academy of Sciences of the United States of America, 97, 5351–5356.

    ADS  Google Scholar 

  97. Takemura, S. Y., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P. K., Katz, W. T., Olbris, D. J., Plaza, S. M., Winston, P., Zhao, T., Horne, J. A., Fetter, R. D., Takemura, S., Blazek, K., Chang, L. A., Ogundeyi, O., Saunders MA, Shapiro V, Sigmund C, Rubin G. M, Scheffer L. K, Meinertzhagen I. A., & Chklovskii D. B. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature, 500, 175–181.

    ADS  Google Scholar 

  98. Tye, K. M., & Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience, 13, 251–266.

    Google Scholar 

  99. Valera, S., Hussy, N., Evans, R. J., Adami, N., North, R. A., Surprenant, A., & Buell, G. (1994). A new class of ligand-gated ion channel defined by receptor for extracellular ATP. Nature, 371, 516–519.

    ADS  Google Scholar 

  100. Venken, K. J. T., Simpson, J. H., & Bellen, H. J. (2011). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron, 72, 202–230.

    Google Scholar 

  101. Vogelstein, J. T., Park, Y., Ohyama, T., Kerr, R. A., Truman, J. W., Priebe, C. E., & Zlatic, M. (2014). Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science, 344, 386–392.

    ADS  Google Scholar 

  102. von Philipsborn A. C., Liu, T., Yu, J. Y., Masser, C., Bidaye, S. S., & Dickson, B. J. (2011). Neuronal control of Drosophila courtship song. Neuron, 69, 509–522.

    Google Scholar 

  103. von Reyn C. R., Breads, P., Peek, M. Y., Zheng, G. Z., Williamson, W. R., Yee, A. L., Leonardo, A., & Card, G. M. (2014). A spike-timing mechanism for action selection. Nature Neuroscience, 17, 962–970.

    Google Scholar 

  104. Wardill, T. J., List, O., Li, X., Dongre, S., McCulloch, M., Ting, C. Y., O’Kane, C. J., Tang, S., Lee, C. H., Hardie, R. C., & Juusola, M. (2012). Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science, 336, 925–931.

    ADS  Google Scholar 

  105. Wu, M. C., Chu, L. A., Hsiao, P. Y., Lin, Y. Y., Chi, C. C., Liu, T. H., Fu, C. C., & Chiang, A. S. (2014). Optogenetic control of selective neural activity in multiple freely moving Drosophila adults. Proceedings of the National Academy of Sciences of the United States of America, 111, 5367–5372.

    ADS  Google Scholar 

  106. Xiang, Y., Yuan, Q., Vogt, N., Looger, L. L., Jan, L. Y., & Jan, Y. N. (2010). Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature, 468, 921–926.

    ADS  Google Scholar 

  107. Yamaguchi, S., Desplan, C., & Heisenberg, M. (2010). Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 107, 5634–5639.

    ADS  Google Scholar 

  108. Yang, S., Papagiakoumou, E., Guillon, M., de Sars V., Tang, C. M., & Emiliani, V. (2011). Three-dimensional holographic photostimulation of the dendritic arbor. Journal of Neural Engineering, 8, 046002.

    ADS  Google Scholar 

  109. Yao, Z., Macara, A. M., Lelito, K. R., Minosyan, T. Y., & Shafer, O. T. (2012). Analysis of functional neuronal connectivity in the Drosophila brain. Journal of Neurophysiology, 108, 684–696.

    Google Scholar 

  110. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., & Deisseroth, K. (2011a). Optogenetics in neural systems. Neuron, 71, 9–34.

    Google Scholar 

  111. Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J., Sohal, V. S., Goshen, I., Finkelstein, J., Paz, J. T., Stehfest, K., Fudim, R., Ramakrishnan, C., Huguenard, J. R., Hegemann, P., & Deisseroth, K. (2011b). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477, 171–178.

    ADS  Google Scholar 

  112. Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., & Deisseroth, K. (2007a). Multimodal fast optical interrogation of neural circuitry. Nature, 446, 633–639.

    ADS  Google Scholar 

  113. Zhang, W., Ge, W., & Wang, Z. (2007b). A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. The European Journal of Neuroscience, 26, 2405–2416.

    Google Scholar 

  114. Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S. P., Mattis, J., Yizhar, O., Hegemann, P., & Deisseroth, K. (2008). Red-shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 11, 631–633.

    Google Scholar 

  115. Zimmermann, G., Wang, L. P., Vaughan, A. G., Manoli, D. S., Zhang, F., Deisseroth, K., Baker, B. S., & Scott, M. P. (2009). Manipulation of an innate escape response in Drosophila: photoexcitation of acj6 neurons induces the escape response. PLoS ONE, 4, e 5100.

    Google Scholar 

Download references

Acknowledgements

The ReaChR flies we tested were a generous gift from D. Anderson. We are grateful to K. Hibbard and S. Pulver for sharing unpublished information about CsChrimson and Jaws flies. We thank the Howard Hughes Medical Institute for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Jayaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, S., Franconville, R., Turner-Evans, D., Jayaraman, V. (2015). Optogenetics in Drosophila melanogaster . In: Douglass, A. (eds) New Techniques in Systems Neuroscience. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12913-6_6

Download citation

Publish with us

Policies and ethics