Skip to main content

Discovery and Development of Spectrally Diverse Channelrhodopsins (ChR) for Neurobiological Applications

  • Chapter
  • First Online:
New Techniques in Systems Neuroscience

Abstract

Channelrhodopsins (ChR) have become important tools for neuroscientific research, and part of an optogenetic toolbox used to excite genetically targeted neurons with light to investigate their functional and behavioral roles. As light is relatively noninvasive and light-induced excitation only occurs in neurons expressing ChR, this approach can be used to perform circuit mapping experiments and modulate behavior in awake animals in ways not possible using pharmacological agents or electrical stimulation. The majority of current ChR experiments utilize blue-light-activated variants and short blue light pulses (1–10 ms) for excitation. The recent discovery and reengineering of red-shifted ChR variants have permitted excitation of neurons with orange and red light (1> 600 nm). These developments have extended the utility of optogenetic experiments to permit novel, noninvasive behavioral screening and the investigation of complex neuronal circuit interactions. This chapter discusses recent developments and applications of red-shifted ChRs in neurobiological research and how these novel ChR variants are having an important impact on biological discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anselmi F., Ventalon C., Begue A., Ogden D., Emiliani V. (2011). Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19504–19509. doi:10.1073/pnas.1109111108.

    Article  ADS  Google Scholar 

  2. Arrenberg, A. B., Stainier, D. Y., Baier, H., & Huisken, J. (2010). Optogenetic control of cardiac function. Science, 330(6006), 971–974. doi:10.1126/science.1195929.

    Article  ADS  Google Scholar 

  3. Ayling, O. G., Harrison, T. C., Boyd, J. D., Goroshkov, A., & Murphy, T. H. (2009). Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nature Methods 6(3), 219–224. doi:10.1038/nmeth.1303.

    Article  Google Scholar 

  4. Bamann, C., Kirsch, T., Nagel, G., & Bamberg, E. (2008). Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. Journal of Molecular Biology, 375(3), 686–694. doi:10.1016/j.jmb.2007.10.072.

    Article  Google Scholar 

  5. Bell, K. A., Shim, H., Chen, C. K., & McQuiston, A. R. (2011). Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain alpha4 and beta2 subunits. Neuropharmacology, 61(8), 1379–1388. doi:10.1016/j.neuropharm.2011.08.024.

    Article  Google Scholar 

  6. Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P., & Deisseroth, K. (2009). Bi-stable neural state switches. Nature Neuroscience, 12(2), 229–234. doi:nn.2247 [pii].

    Article  Google Scholar 

  7. Berndt, A., Schoenenberger, P., Mattis, J., Tye, K. M., Deisseroth, K., Hegemann, P., & Oertner, T. G. (2011). High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7595–7600. doi:10.1073/pnas.1017210108.

    Article  ADS  Google Scholar 

  8. Berndt, A., Lee, S. Y., Ramakrishnan, C., & Deisseroth, K. (2014). Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science, 344(6182), 420–424. doi:10.1126/science.1252367.

    Article  ADS  Google Scholar 

  9. Bi, A., Cui, J., Ma, Y. P., Olshevskaya, E., Pu, M., Dizhoor, A. M., & Pan, Z. H. (2006). Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron, 50(1), 23–33. doi:10.1016/j.neuron.2006.02.026.

    Article  Google Scholar 

  10. Boyden, E. S., & Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8(9), 1263–1268. doi:10.1038/nn1525.

    Article  Google Scholar 

  11. Bruegmann, T., Malan, D., Hesse, M., Beiert, T., Fuegemann, C. J., Fleischmann, B. K., & Sasse, P. (2010). Optogenetic control of heart muscle in vitro and in vivo. Nature Methods, 7(11), 897–900. doi:10.1038/nmeth.1512.

    Article  Google Scholar 

  12. Campagnola, L., Wang, H., & Zylka, M. J. (2008). Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin –2. Journal of Neuroscience Methods, 169(1), 27–33. doi:10.1016/j.jneumeth.2007.11.012.

    Article  Google Scholar 

  13. Carlson, H. J., & Campbell, R. E. (2013). Circular permutated red fluorescent proteins and calcium ion indicators based on mCherry. Protein Engineering, Design & Selection (PEDS), 26(12), 763–772. doi:10.1093/protein/gzt052.

    Article  Google Scholar 

  14. Carpentier D.C., Vevis K., Trabalza A., Georgiadis C, Ellison S.M., Asfahani R.I., Mazarakis N.D. (2012). Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein. Gene Ther, 19(7),761–774.

    Google Scholar 

  15. Drew, P. J., Shih, A. Y., Driscoll, J. D., Knutsen, P. M., Blinder, P., Davalos, D., Akassoglou, K., Tsai, P. S., & Kleinfeld, D. (2010). Chronic optical access through a polished and reinforced thinned skull. Nature Methods, 7(12), 981–984. doi:nmeth.1530 [pii].

    Article  Google Scholar 

  16. Egawa, T., Hanaoka, K., Koide, Y., Ujita, S., Takahashi, N., Ikegaya, Y., Matsuki, N., Terai, T., Ueno, T., Komatsu, T., & Nagano, T. (2011). Development of a far-red to near-infrared fluorescence probe for calcium ion and its application to multicolor neuronal imaging. Journal of the American Chemical Society, 133(36), 14157–14159. doi:10.1021/ja205809h.

    Article  Google Scholar 

  17. Gong, Y., Li, J. Z., & Schnitzer, M. J. (2013). Enhanced Archaerhodopsin Fluorescent Protein Voltage Indicators. PloS ONE, 8(6), e66959. doi:10.1371/journal.pone.0066959.

    Article  ADS  Google Scholar 

  18. Gorostiza, P., Volgraf, M., Numano, R., Szobota, S., Trauner, D., & Isacoff, E. Y. (2007). Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 10865–10870. doi:10.1073/pnas.0701274104.

    Article  ADS  Google Scholar 

  19. Gradinaru, V., Thompson, K. R., Zhang, F., Mogri, M., Kay, K., Schneider, M. B., & Deisseroth, K. (2007). Targeting and readout strategies for fast optical neural control in vitro and in vivo. The. Journal of Neuroscience, 27(52), 14231–14238. doi:10.1523/JNEUROSCI.3578-07.2007.

    Article  Google Scholar 

  20. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., & Wiesel, T. N. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 324(6095), 361–364. doi:10.1038/324361a0.

    Article  ADS  Google Scholar 

  21. Gunaydin, L. A., Yizhar, O., Berndt, A., Sohal, V. S., Deisseroth, K., & Hegemann, P. (2010). Ultrafast optogenetic control. Nature Neuroscience, 13(3), 387–392. doi:nn.2495 [pii].

    Article  Google Scholar 

  22. Gunsalus, C. K., Bruner, E. M., Burbules, N. C., Dash, L., Finkin, M., Goldberg, J. P., Greenough, W. T., Miller, G. A., & Pratt, M. G. (2006). Mission creep in the IRB world. Science, 312(5779), 1441. doi:10.1126/science.1121479.

    Article  Google Scholar 

  23. Han, X., & Boyden, E. S. (2007). Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PloS ONE, 2(3), e299. doi:10.1371/journal.pone.0000299.

    Article  ADS  Google Scholar 

  24. Harrison, T. C., Ayling, O. G., & Murphy, T. H. (2012). Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron, 74(2), 397–409. doi:10.1016/j.neuron.2012.02.028.

    Article  Google Scholar 

  25. Huber, D., Petreanu, L., Ghitani, N., Ranade, S., Hromadka, T., Mainen, Z., & Svoboda, K. (2008). Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature, 451(7174), 61–64. doi:10.1038/nature06445.

    Article  ADS  Google Scholar 

  26. Inagaki, H. K., Jung, Y., Hoopfer, E. D., Wong, A. M., Mishra, N., Lin, J. Y., Tsien, R. Y., & Anderson, D. J. (2014). Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature Methods, 11, 325–332. doi:10.1038/nmeth.2765

    Article  Google Scholar 

  27. Ishizuka, T., Kakuda, M., Araki, R., & Yawo, H. (2006). Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neuroscience Research, 54(2), 85–94. doi:10.1016/j.neures.2005.10.009.

    Article  Google Scholar 

  28. Jurgens, C. W., Bell, K. A., McQuiston, A. R., & Guido, W. (2012). Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus. PloS ONE, 7(9), e45717. doi:10.1371/journal.pone.0045717.

    Article  ADS  Google Scholar 

  29. Klapoetke, N. C., Murata, Y., Kim, S. S., Pulver, S. R., Birdsey-Benson, A., Cho, Y. K., Morimoto, T. K., Chuong, A. S., Carpenter, E. J., Tian, Z., Wang, J., Xie, Y., Yan, Z., Zhang, Y., Chow, B. Y., Surek, B., Melkonian, M., Jayaraman, V., Constantine-Paton, M., Wong, G. K., & Boyden, E. S. (2014). Independent optical excitation of distinct neural populations. Nature Methods, 11, 338–346. doi:10.1038/nmeth.2836

    Article  Google Scholar 

  30. Kleinlogel, S., Feldbauer, K., Dempski, R. E., Fotis, H., Wood, P. G., & Bamann, C., Bamberg, E. (2011). Ultra light-sensitive and fast neuronal activation with the Ca(2)+ -permeable channelrhodopsin CatCh. Nature Neuroscience, 14(4), 513–518. doi:nn.2776 [pii]

    Article  Google Scholar 

  31. Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D., & Cohen, A. E. (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods, 9(1), 90–95. doi:10.1038/nmeth.1782

    Article  Google Scholar 

  32. Li, X., Gutierrez, D. V., Hanson, M. G., Han, J., Mark, M. D., Chiel, H., Hegemann, P., Landmesser, L. T., & Herlitze, S. (2005). Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 102(49), 17816–17821. doi:10.1073/pnas.0509030102.

    Google Scholar 

  33. Lin, J. Y. (2011). A user’s guide to channelrhodopsin variants: Features, limitations and future developments. Experimental Physiology, 96(1), 19–25. doi:expphysiol.2009.051961 [pii].

    Article  Google Scholar 

  34. Lin, J. Y., Lin, M. Z., Steinbach, P., & Tsien, R. Y. (2009). Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophysical Journal, 96(5), 1803–1814. doi:S0006–3495(09)00016-2 [pii].

    Article  ADS  Google Scholar 

  35. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D., & Tsien, R. Y. (2013a). ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 16(10), 1499–1508.

    Google Scholar 

  36. Lin, J. Y., Sann, S. B., Zhou, K., Nabavi, S., Proulx, C. D., Malinow, R., Jin, Y., & Tsien, R. Y. (2013b). Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron, 79(2), 241–253. doi:10.1016/j.neuron.2013.05.022.

    Google Scholar 

  37. Mattis, J., Tye, K. M., Ferenczi, E. A., Ramakrishnan, C., O’Shea, D. J., Prakash, R., Gunaydin, L. A., Hyun, M., Fenno, L. E., Gradinaru, V., Yizhar, O., & Deisseroth, K. (2012). Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods, 9(2), 159–172. doi:10.1038/nmeth.1808.

    Article  Google Scholar 

  38. Meyer, M. M., Hochrein, L., & Arnold, F. H. (2006). Structure-guided SCHEMA recombination of distantly related beta-lactamases. Protein Engineering, Design & Selection (PEDS), 19(12), 563–570. doi:10.1093/protein/gzl045.

    Article  Google Scholar 

  39. Miller, G. (2006). Optogenetics. Shining new light on neural circuits. Science, 314(5806), 1674–1676. doi:10.1126/science.314.5806.1674.

    Article  ADS  Google Scholar 

  40. Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E., & Hegemann, P. (2002). Channelrhodopsin-1: A light-gated proton channel in green algae. Science, 296(5577), 2395–2398. doi:10.1126/science.1072068.

    Article  ADS  Google Scholar 

  41. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., & Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13940–13945. doi:10.1073/pnas.1936192100.

    Article  ADS  Google Scholar 

  42. Nagel, G., Brauner, M., Liewald, J. F., & Adeishvili, N., Bamberg, E., Gottschalk, A. (2005). Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Current Biology (CB), 15(24), 2279–2284. doi:10.1016/j.cub.2005.11.032.

    Article  Google Scholar 

  43. O’Connor, D. H., Hires, S. A., Guo, Z. V., Li, N., Yu, J., Sun, Q. Q., Huber, D., & Svoboda, K. (2013). Neural coding during active somatosensation revealed using illusory touch. Nature Neuroscience, 16(7), 958–965. doi:10.1038/nn.3419.

    Article  Google Scholar 

  44. Osakada F., Mori T., Cetin A.H., Marshel J.H., Virgen B., Callaway E.M. (2011). New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron, 71(4), 617–631.

    Google Scholar 

  45. Papagiakoumou, E., Anselmi, F., Begue, A., de Sars V., Gluckstad, J., Isacoff, E. Y., & Emiliani, V. (2010). Scanless two-photon excitation of channelrhodopsin-2. Nature Methods, 7(10), 848–854. doi:10.1038/nmeth.1505.

    Article  Google Scholar 

  46. Petreanu, L., Huber, D., Sobczyk, A., & Svoboda, K. (2007). Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neuroscience, 10(5), 663–668. doi:10.1038/nn1891.

    Article  Google Scholar 

  47. Reutsky-Gefen, I., Golan, L., Farah, N., Schejter, A., Tsur, L., Brosh, I., & Shoham, S. (2013). Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nature Communications, 4, 1509. doi:10.1038/ncomms2500.

    Article  ADS  Google Scholar 

  48. Sakai, S., Ueno, K., Ishizuka, T., & Yawo, H. (2013). Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector. Neuroscience Research, 75(1), 59–64. doi:10.1016/j.neures.2012.03.009.

    Article  Google Scholar 

  49. Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W., & Tsien, R. Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods, 5(6), 545–551. doi:10.1038/nmeth.1209.

    Article  Google Scholar 

  50. Smith, M. A., Romero, P. A., Wu, T., Brustad, E. M., & Arnold, F. H. (2013). Chimeragenesis of distantly-related proteins by noncontiguous recombination. Protein Science (A Publication Of The Protein Society), 22(2), 231–238. doi:10.1002/pro.2202.

    Article  Google Scholar 

  51. Sparta, D. R., Stamatakis, A. M., Phillips, J. L., Hovelso, N., van Zessen R., & Stuber, G. D. (2012). Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nature Protocols, 7(1), 12–23. doi:10.1038/nprot.2011.413.

    Article  Google Scholar 

  52. Szobota, S., Gorostiza, P., Del Bene, F., Wyart, C., Fortin, D. L., Kolstad, K. D., Tulyathan, O., Volgraf, M., Numano, R., Aaron, H. L., Scott, E. K., Kramer, R. H., Flannery, J., Baier, H., Trauner, D., & Isacoff, E. Y. (2007). Remote control of neuronal activity with a light-gated glutamate receptor. Neuron, 54(4), 535–545. doi:10.1016/j.neuron.2007.05.010.

    Article  Google Scholar 

  53. Towne, C., Montgomery, K. L., Iyer, S. M., Deisseroth, K., & Delp, S. L. (2013). Optogenetic control of targeted peripheral axons in freely moving animals. PloS ONE, 8(8), e72691. doi:10.1371/journal.pone.0072691.

    Article  ADS  Google Scholar 

  54. Tromberg, B. J., Shah, N., Lanning, R., Cerussi, A., Espinoza, J., Pham, T., Svaasand, L., & Butler, J. (2000). Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy. Neoplasia (New York, N. Y.), 2(1–2), 26–40.

    Article  Google Scholar 

  55. Trudeau, D. L., Smith, M. A., Arnold, F.H. (2013). Innovation by homologous recombination. Current Opinion In Chemical Biology, 17(6), 902–909. doi:10.1016/j.cbpa.2013.10.007.

    Article  Google Scholar 

  56. Tsuda, S., Kee, M. Z., Cunha, C., Kim, J., Yan, P., Loew, L. M., & Augustine, G. J. (2013). Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging. Neuroscience Research, 75(1), 76–81. doi:10.1016/j.neures.2012.11.006.

    Article  Google Scholar 

  57. Wang, L., Jackson, W. C., Steinbach, P. A., & Tsien, R. Y. (2004). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 101(48), 16745–16749. doi:10.1073/pnas.0407752101.

    Google Scholar 

  58. Wang, H., Sugiyama, Y., Hikima, T., Sugano, E., Tomita, H., Takahashi, T., Ishizuka, T., & Yawo, H. (2009). Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. The Journal of Biological Chemistry, 284(9), 5685–5696. doi:10.1074/jbc.M807632200.

    Article  Google Scholar 

  59. Wang, K., Liu, Y., Li, Y., Guo, Y., Song, P., Zhang, X., Zeng, S., & Wang, Z. (2011). Precise spatiotemporal control of optogenetic activation using an acousto-optic device. PloS ONE, 6(12), e28468. doi:10.1371/journal.pone.0028468.

    Article  ADS  Google Scholar 

  60. Watanabe, S., Liu, Q., Davis, M. W., Hollopeter, G., Thomas, N., Jorgensen, N. B., & Jorgensen, E. M. (2013). Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife, 2, e00723. doi:10.7554/eLife.00723.

    Article  Google Scholar 

  61. Wen, L., Wang, H., Tanimoto, S., Egawa, R., Matsuzaka, Y., Mushiake, H., Ishizuka, T., & Yawo, H. (2010). Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PloS ONE, 5(9), e12893. doi:e12893 [pii].

    Article  ADS  Google Scholar 

  62. Wietek, J., Wiegert, J. S., Adeishvili, N., Schneider, F., Watanabe, H., Tsunoda, S. P., Vogt, A., Elstner, M., Oertner, T. G., & Hegemann, P. (2014). Conversion of channelrhodopsin into a light-gated chloride channel. Science, 344(6182), 409–412. doi:10.1126/science.1249375.

    Article  ADS  Google Scholar 

  63. Xu, W., & Sudhof, T. C. (2013). A neural circuit for memory specificity and generalization. Science, 339(6125), 1290–1295. doi:10.1126/science.1229534.

    Article  ADS  Google Scholar 

  64. Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J., Sohal, V. S., Goshen, I., Finkelstein, J., Paz, J. T., Stehfest, K., Fudim, R., Ramakrishnan, C., Huguenard, J. R., Hegemann, P., & Deisseroth, K. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477(7363), 171–178. doi:10.1038/nature10360.

    Article  ADS  Google Scholar 

  65. Zhang, Y. P., & Oertner, T. G. (2007). Optical induction of synaptic plasticity using a light-sensitive channel. Nature Methods, 4(2), 139–141. doi:10.1038/nmeth988

    Article  Google Scholar 

  66. Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A., & Deisseroth, K. (2007). Multimodal fast optical interrogation of neural circuitry. Nature, 446(7136), 633–639. doi:10.1038/nature05744.

    Article  ADS  Google Scholar 

  67. Zhang, F., Prigge, M., Beyriere, F., Tsunoda, S. P., Mattis, J., Yizhar, O., Hegemann, P., & Deisseroth, K. (2008). Red-shifted optogenetic excitation: A tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 11(6), 631–633. doi:nn.2120 [pii].

    Article  Google Scholar 

  68. Zhao, S., Ting, J. T., Atallah, H. E., Qiu, L., Tan, J., Gloss, B., Augustine, G. J., Deisseroth, K., Luo, M., Graybiel, A. M., & Feng, G. (2011). Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods, 8(9), 745–752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Y. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, J., Knutsen, P., Muller, A. (2015). Discovery and Development of Spectrally Diverse Channelrhodopsins (ChR) for Neurobiological Applications. In: Douglass, A. (eds) New Techniques in Systems Neuroscience. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-12913-6_5

Download citation

Publish with us

Policies and ethics