Skip to main content

Bacterial Synthesis of Polyhydroxyalkanoates Using Renewable Resources

  • Chapter
  • First Online:
Bioprospects of Coastal Eubacteria
  • 503 Accesses

Abstract

Polyhydroxyalkanoates (PHA) are gaining attention due to their resemblance to conventional plastics and complete biodegradability on disposal. The widespread use of this polymer is restricted due to its high production cost. The use of inexpensive and renewable carbon substrates such as agroindustrial wastes and by-products as PHA feedstock can contribute to as much as 40–50 % reduction in the PHA production cost. Gram-positive bacteria such as Bacillus spp. are potential contenders for industrial scale PHA production due to their rapid growth, ability to produce various hydrolytic enzymes, accumulation of copolymers from structurally unrelated carbon sources and lack of lipopolysaccharide (LPS) layer. Therefore, there is a need to screen for bacteria belonging to the genus Bacillus capable of producing appreciable amounts of PHA from complex carbon sources.

The PHA content accumulated by the different Bacillus strains isolated from marine and coastal ecosystems ranged between 39.6 and 62.3 % using glucose as the sole carbon source. Quantitative estimation of PHA accumulated by Bacillus isolates using alternative substrates such as molasses, starch-based wafer residue, citrus fruit waste and coconut oil cake as a sole source of carbon was undertaken. Molasses proved to be an excellent carbon source for growth and polymer production with all the tested isolates, producing more than 50 % PHA as cell dry weight. Citrus fruit waste also promoted biomass and PHA production by submerged cultivation. This study thus emphasizes the potential of Bacillus spp. to produce PHA polymer from diverse renewable low-cost feed stocks at substantially reduced production costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role and Industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 54, 450–472.

    Google Scholar 

  • Anil Kumar, P. K., Shamala, T. R., Kshama, L., Prakash, M. H., Joshi, G. J., Chandrashekar, A., Latha Kumari, K. S., & Divyashree, M. S. (2007). Bacterial synthesis of poly(hydroxybutyrate-co-hydroxyvalerate) using carbohydrate-rich mahua (Madhuca sp.) flowers. Journal of Applied Microbiology, 103, 204–209.

    Article  Google Scholar 

  • Aslim, B., Yüksekdağ, Z. N., & Beyatli, Y. (2002). Determination of PHB growth quantities of certain Bacillus species isolated from soil. Turkish Electronic Journal of Biotechnology Special Issue, 24–30.

    Google Scholar 

  • Borah, B., Thakur, P. S., & Nigam, J. N. (2002). The influence of nutritional and environmental conditions on the accumulation of poly-β-hydroxybutyrate in Bacillus mycoides RLJ B-017. Journal of Applied Microbiology, 92, 776–783.

    Article  Google Scholar 

  • Budwill, K., Fedorak, P. M., & Page, W. J. (1992). Methanogenic degradation of poly(3-­hydroxyalkanoates). Applied Environmental Microbiology, 58, 1398–1401.

    Google Scholar 

  • Castilho, L. R., Mitchell, D. A., & Freire, D. M. G. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100, 5996–6009.

    Article  Google Scholar 

  • Chaijamrus, S., & Udpuay, N. (2008). Production and Characterization of Polyhydroxybutyrate from Molasses and Corn Steep Liquor produced by Bacillus megaterium ATCC 6748. Agricultural Engineering International: the CIGR Ejournal. Vol. X. Manuscript FP 07 030.

    Google Scholar 

  • Chen, G.-Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26, 6565–6578.

    Article  Google Scholar 

  • Chen, G.-Q., König, K.-H., & Lafferty, R. M. (1991). Occurence of poly-D(-)-3-hydroxyalkanoates in the genus Bacillus. FEMS Microbiology Letters, 84, 173–176.

    Google Scholar 

  • Choi, J., & Lee, S. Y. (1997). Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Engineering, 17, 335–342.

    Article  Google Scholar 

  • Choi, J., & Lee, S. Y. (1999). Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Applied Microbiology and Biotechnology, 51, 13–21.

    Article  Google Scholar 

  • Full, T. D., Jung, D. O., & Madigan, M. T. (2006). Production of poly-β-hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Letters in Applied Microbiology, 43, 377–384.

    Article  Google Scholar 

  • Gouda, M. K., Swellan, A. E., & Omar, S. H. (2001). Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiological Research, 156, 201–207.

    Article  Google Scholar 

  • Halami, P. (2008). Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World Journal of Microbiology and Biotechnology, 24, 805–812.

    Article  Google Scholar 

  • Huang, T.-Y., Duan, K.-J., Huang, S.-Y., & Chen, C. W. (2006). Production of polyhydroxyalkanaotes from inexpensive extruded rice bran and starch by Haloferax mediterranei. Journal of Industrial Microbiology and Biotechnology, 33, 701–706.

    Article  Google Scholar 

  • Jendrossek, D. (2001). Microbial degradation of biopolyesters. Advances in Biochemical Engineering/Biotechnology, 71, 294–325.

    Google Scholar 

  • Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40, 607–619.

    Article  Google Scholar 

  • Kim, B. S. (2000). Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme Microbial Technology, 27, 774–777.

    Article  Google Scholar 

  • Kitamura, S., & Doi, Y. (1994). Staining method of poly(3-hydroxyalkanoic acid) producing bacteria by Nile Blue. Biotechnology Techniques, 8, 345–350.

    Article  Google Scholar 

  • Koutinas, A. A., Wang, Y. X., & Webb, C. (2007). Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enzyme Microbial Technology, 40, 1035–1044.

    Article  Google Scholar 

  • Kulpreecha, S., Boonruangthavorn, A., Meksiriporn, B., & Thongchul, N. (2009). Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. Journal of Bioscience and Bioengineering, 107, 240–245.

    Article  Google Scholar 

  • Kumar, T., Singh, M., Purohit, H. J., & Kalia, V. C. (2009). Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. Journal of Applied Microbiology, 106, 2017–2023.

    Article  Google Scholar 

  • Lee, S. Y. (1996). Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 49, 1–14.

    Article  Google Scholar 

  • Lee, S. Y., & Chang, H. N. (1995). Production of poly(hydroxyalkanoic acid). Advances in Biochemical Engineering, 52, 28–58.

    Google Scholar 

  • Lee, S. Y., Wong, H. H., Choi, J., Lee, S. H., Lee, S. C., & Han, C. S. (2000). Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnology and Bioengineering, 68, 466–470.

    Article  Google Scholar 

  • Lillo, J. G., & Rodriguez-Valera, F. (1990). Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Applied Environmental Microbiology, 56, 2517–2521.

    Google Scholar 

  • Luzier, W. D. (1992). Materials derived from biomass/biodegradable materials. Proceedings of the National Academy of Science USA, 89, 839–842.

    Google Scholar 

  • Mueller, R. J. (2006). Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochemistry, 41, 2124–2128.

    Article  Google Scholar 

  • Oliveira, F. C., Freire, D. M. G., & Castilho, L. R. (2004). Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnology Letters, 26, 1851–1855.

    Article  Google Scholar 

  • Pandian, S. R., Deepak, V., Kalishwaralal, K., Rameshkumar, N., Jeyaraj, M., & Gurunathan, S. (2010). Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresource Technology, 101, 705–711.

    Article  Google Scholar 

  • Philip, S., Sengupta, S., Keshavarz, T., & Roy, I. (2009). Effect of impeller speed and pH on the production of Poly(3-hydroxybutyrate) using Bacillus cereus SPV. Biomacromolecules, 10, 691–699.

    Article  Google Scholar 

  • Prabhu, N. N. (2010). Polyhydroxyalkankaote (PHA) synthases in selected Bacillus spp. PhD dissertation, Goa University

    Google Scholar 

  • Prabhu, N. N., Santimano, M. C., & Garg, S. (2009). Studies on polyhydroxyalkanote production by a marine Bacillus sp. NQ-11/A2 isolated from continental shelf sediment. Journal of Current Science, 14(1), 265–273.

    Google Scholar 

  • Prabhu, N. N., Santimano, M. C., Bhosle, S. N., Mavinkurve, S., & Garg, S. (2010). Native granule associated SCL-PHA synthase from a marine derived Bacillus sp. NQ-11/A2. Antonie van Leeuwenhoek, 97, 41–50.

    Article  Google Scholar 

  • Ramadas, N. V., Singh, S. K., Soccol, C. R., & Pandey, A. (2009). Polyhydtoxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Brazilian Archives of Biology and Technology, 52, 17–23.

    Article  Google Scholar 

  • Rebah, F. B., Prévost, D., Tyagi, R. D., & Belbahri, L. (2009). Poly-beta-hydroxybutyrate production by fast-growing Rhizobia cultivated in sludge and in industrial wastewater. Applied Biochemistry and Biotechnology, 158, 155–163.

    Article  Google Scholar 

  • Reddy, C. S. K., Ghai, R., Rashmi, Kalia, V. C. (2003). Polyhydroxyalkanoates: An overview. Bioresource Technology, 87, 137–146.

    Article  Google Scholar 

  • Rohini, D., Phadnis, S., & Rawal, S. K. (2006). Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuriengiensis R1. Indian Journal of Biotechnology, 5, 276–283.

    Google Scholar 

  • Rusendi, D., & Sheppard, J. D. (1995). Hydrolysis of potato processing waste for the production of poly-β-hydroxybutyrate. Bioresource Technology, 54, 191–196.

    Article  Google Scholar 

  • Santimano, M. C., Prabhu, N. N., & Garg, S. (2009a). A simple method for PHA production by Bacillus sp. COL1/A6 utilizing waste coconut oil cake. Journal of Current Science, 14, 274–282.

    Google Scholar 

  • Santimano, M. C., Prabhu, N. N., & Garg, S. (2009b). PHA production using low-cost agronomic wastes by Bacillus sp. strain COL1/A6. Research Journal of Microbiology, 4, 89–96.

    Article  Google Scholar 

  • Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26, 246–265.

    Article  Google Scholar 

  • Shamala, T. R., Chandrashekar, A., Vijayendra, S. V. N., & Kshama, L. (2003). Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). Journal of Applied Microbiology, 94, 369–374.

    Article  Google Scholar 

  • Singh, A. K., & Mallick, N. (2009). Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. Journal of Industrial Microbiology and Biotechnology, 36, 347–354.

    Article  Google Scholar 

  • Somashekara, D. M., Rastogi, N. K., & Ramachandriah, S. T. (2009). A simple kinetic model for growth and biosynthesis of polyhydroxylaknaote in Bacillus flexus. New Biotechnology, 26, 92–98.

    Article  Google Scholar 

  • Thomsen, M. H. (2005). Complex media from processing of agricultural crops for microbial fermentation. Applied Microbiology and Biotechnology, 68, 598–606.

    Article  Google Scholar 

  • Valappil, S. P., Peiris, D., Langley, G. J., Hernimann, J. M., Boccaccini, A. R., Bucke, C., & Roy, I. (2007a). Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. Journal of Biotechnology, 127, 475–487.

    Article  Google Scholar 

  • Valappil, S. P., Boccaccini, A. R., Bucke, C., & Roy, I. (2007b). Polyhydroxyalkanoates in Gram-positive bacteria: Insights from the genera Bacillus and Streptomyces. Antonie van Leeuwenhoek, 91, 1–17.

    Article  Google Scholar 

  • Valappil, S. P., Misra, S. K., Boccaccini, A. R., Keshavarz, T., Bucke, C., & Roy, I. (2007c). Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterized Bacillus cereus SPV. Journal of Biotechnology, 132, 251–258.

    Article  Google Scholar 

  • Van-Thuoc, D., Quillaguaman, J., Mamo, G., & Mattiason, B. (2008). Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. Journal of Applied Microbiology, 104, 420–428.

    Google Scholar 

  • Wu, Q., Huang, H., Hu, G., Chen, J., Ho, K. P., & Chen, G.-Q. (2001). Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie van Leeuwenhoek, 80, 111–118.

    Article  Google Scholar 

  • Yilmaz, M., & Beyatli, Y. (2005). Poly-β-hydroxybutyrate (PHB) production by a Bacillus cereus M5 strain in sugarbeet molasses. Zuckerindustries, 130, 109–112.

    Google Scholar 

  • Yu, J. (2007). Microbial production of bioplastics from renewable resources. In S.-T. Yang (Ed.), Bioprocessing for value-added products from renewable resources (pp. 585–610). Amsterdam: Elservier B.V.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Celisa Santimano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santimano, M. (2015). Bacterial Synthesis of Polyhydroxyalkanoates Using Renewable Resources. In: Borkar, S. (eds) Bioprospects of Coastal Eubacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-12910-5_9

Download citation

Publish with us

Policies and ethics