Heterotrophic Bacteria Producing Polyhydroxyalkanoates: A Biodegradable Polymer



Polyhydroxyalkanoates (PHAs), a class of naturally occurring, optically active, aliphatic biopolyesters are gaining tremendous attention as they are the potential substitute to the nonbiodegradable petrochemical-based synthetic plastics. Microorganisms synthesize PHA in the form of intracellular, spherical, nano-sized inclusions, the size and number of which vary depending upon the bacteria. They are potentially useful in industries, with the major application of PHAs being in the medical field, especially in tissue engineering. In recent years, Gram-positive organisms such as Bacillus and Streptomyces species have been recognized as potential strains for commercial scale PHA production as lipopolysaccharide is one of the major contaminants known to copurify when extracted from Gram-negative bacteria.

Isolation of bacteria from diverse coastal and marine arenas carried out to obtain PHA producers revealed the highest heterotrophic bacterial load in the mangrove area. However, the distribution of PHA producers was the highest in the nutrient-limited marine sediment samples. Based on the intensity as well as the duration of maximum PHA production on glucose, 11 Gram-positive, rod-shaped sporulating isolates were selected for further studies. These isolates belonged to the genus Bacillus, with the majority being Bacillus megaterium. Nile blue A staining of the isolates revealed the presence of intracellular PHA granules which exhibited bright orange-red fluorescence when viewed under fluorescent light. Further, characterization of the polymer extracted from these bacteria using Fourier transform infrared (FTIR) spectroscopy confirmed the aliphatic nature of the PHA polymer. Different strains of Bacillus species obtained in the present study can be exploited for the production of PHAs for biomedical applications.


Mangroves Biodegradable polymer Polyhydroxyalkanoates Nile blue A Bacillus megaterium 


  1. Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role and Industrial uses of bacterial polyhydroxyalkanoates. Microbiology Reviews, 54, 450–472.Google Scholar
  2. Anil Kumar, P. K., Shamala, T. R., Kshama, L., Prakash, M. H., Joshi, G. J., Chandrashekar, A., Lathakumari, K. S., & Divyashree, M. S. (2007). Bacterial synthesis of poly (hydroxybutyrate-co-hydroxyvalerate) using carbohydrate rich mahua (Madhuca sp) flowers. Journal of Applied Microbiology, 103, 204–209.CrossRefGoogle Scholar
  3. Arun, A., Arthi, R, Shanmugabalaji, V., & Eyini, M. (2009). Microbial production of poly-β-hydroxybutyrate by marine microbes isolates from various marine environments. Bioresource Technology, 100, 2320–2323.CrossRefGoogle Scholar
  4. Bhosle, N. B., & Mavinkurve, S. (1980). Hydrocarbon utilizing microorganisms from Dona Paula Bay, Goa. Marine Environmental Research, 4, 53–58.CrossRefGoogle Scholar
  5. Borah, B., Thakur, P. S., & Nigam, J. N. (2002). The influence of nutritional and environmental conditions on the accumulation of poly-β-hydroxybutyrate in Bacillus mycoides RLJ B-017. Journal of Applied Microbiology, 92, 776–783.CrossRefGoogle Scholar
  6. Brandl, H., Gross, R. A., Lenz, R. W., & Fuller, R. C. (1990). Plastics from bacteria and for bacteria: Poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters. Advances in Biochemical Engineering/Biotechnology, 41, 77–93.CrossRefGoogle Scholar
  7. Burdon, K. L. (1946). Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. Journal of Bacteriology, 52, 665–678.Google Scholar
  8. Byrom, D. (1994). Polyhydroxyalkanoates. In: D. P. Mobley (Ed.), Plastic from microbes: Microbial synthesis of polymers and polymer precursors (pp. 5–33). Munich: Hanser.Google Scholar
  9. Chien, C-C., Chen, C-C., Choi, M-H., Kung, S-S., & Wei, Y-H. (2007). Production of poly-β-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. Journal of Biotechnology, 132, 259–263.CrossRefGoogle Scholar
  10. Dawes, E. A., & Senior, P. J. (1973). The role and regulation of energy reserve polymers in micro-organisms. Advances in Microbial Physiology, 10, 135–266.CrossRefGoogle Scholar
  11. Gagnon, K. D., Lenz, R. W., Farris, R. J., & Fuller, R. C. (1992). Crystallization behaviour and its influence on the mechanical properties of a thermoplastic elastomer produced by Pseudomonas oleovorans. Macromolecules, 25, 3723–3728.CrossRefGoogle Scholar
  12. Gao, D., Maehara, A., Yamane, T., & Ueda, S. (2001). Identification of the intracellular polyhydroxyalkanoate depolymerase gene of Paracoccus denitrificans and some properties of the gene product. FEMS Microbiology Letters, 196, 159–164.CrossRefGoogle Scholar
  13. Halami, P. M. (2008). Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World Journal of Microbiology and Biotechnology, 24, 805–812.CrossRefGoogle Scholar
  14. Hezayen, F. F., Steinbüchel, A., & Rehm, B. H. A. (2002). Biochemical and enzymological properties of the polyhydroxybutyrate synthase from the extremely halophilic archaeon strain 56. Archives Biochemistry and Biophysis, 403, 284–291.CrossRefGoogle Scholar
  15. Lenz, R. W., & Marchessault, R. H. (2005). Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 6, 1–8.CrossRefGoogle Scholar
  16. Leong, Y. K., Show, P. L., Ooi, C. W., Ling, T. C., & Lan, J. C. (2014). Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. Journal of Biotechnology , 180, 52–65.CrossRefGoogle Scholar
  17. Lopez, N. I., Floccari, M. E., Steinbuchel, A., Garcia, A. F., & Mendez, B. S. (1995). Effect of poly(3-hydroxybutyrate) (PHB) content on the starvation of bacteria in natural waters. FEMS Microbiology Ecology, 16, 95–102.CrossRefGoogle Scholar
  18. Lutke-Eversloh, T., Bergander, K., Luftmann, H., & Steinbuchel, A. (2001). Identification of a new class of biopolymer: bacterial synthesis of a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Microbiology, 147, 11–19.Google Scholar
  19. Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly(3-Hydroxyalkanoates): From DNA to plastic. Microbiology and Molecular Biology Reviews, 63, 21–53.Google Scholar
  20. Matondkar, S. G. P., Mahtani, S., & Mavinkurve, S. (1980). The fungal flora of the mangrove swamps of Goa. Mahasagar-Bulletin of National Institute of Oceanography, 13, 281–283.Google Scholar
  21. Matondkar, S. G. P., Mahtani, S., & Mavinkurve, S. (1981). Studies on mangrove swamps of Goa: Heterotrophic bacterial flora from mangroves swamps. Mahasagar-Bulletin of National Institute of Oceanography, 14, 325–327.Google Scholar
  22. McCool, G. J., Fernandez, T., Li, N., & Cannon, M. C. (1996). Polyhydroxyalkanoate inclusion-body growth and proliferation in Bacillus megaterium. FEMS Microbiology Letters, 138, 41–48.CrossRefGoogle Scholar
  23. Naik, S., Venu Gopal, S. K., & Somal, P. (2008). Bioproduction of polyhydroxyalkanoates from bacteria: A metabolic approach. World Journal of Microbiology and Biotechnology, 24, 2307–2314.CrossRefGoogle Scholar
  24. Nair, S., & LokaBharathi, P. A. (1980). Heterotrophic bacterial population in tropical sandy beaches. Mahasagar-Bulletin of the National Institute of Oceanography, 13, 261–267.Google Scholar
  25. Nair, S., LokaBharathi, P. A., & Achuthankutty, C. T. (1978). Distribution of heterotrophic bacteria in marine sediments. Indian Journal of Marine Science, 7, 18–22.Google Scholar
  26. Nair, S., LokaBharathi, P. A., & Achuthankutty, C. T. (1989). Heterotrophic bacteria and biochemical activities off the west coast of India. Mahasagar-Bulletin of the National Institute of Oceanography, 12, 75–81.Google Scholar
  27. Ojumu, T. V., Yu, J., & Solomon, B. O. (2004). Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. African Journal of Biotechnology, 3, 18–24.CrossRefGoogle Scholar
  28. Omar, S., Rayes, A., Eqaab, A., Vob, I., & Steinbuchel, A. (2001). Optimization of cell growth and poly (3-hydroxybutyrate) accumulation on date syrup by a Bacillus megaterium strain. Biotechnology Letters, 23, 1119–1123.CrossRefGoogle Scholar
  29. Ostle, A. G., & Holt, J. G. (1982). Nile blue A as a Fluorescent stain for poly-b-hydroxybutyrate. Applied Environmental Microbiology, 44, 238–241.Google Scholar
  30. Pal, S., & Paul, A. K. (2001). Studies of poly(3-hydroxybutyric acid) inclusions in whole cells of Azotobacterchroococcum MAL-201. Current Science, 81, 210–212.Google Scholar
  31. Palaniappan, R., & Krishnamurthy, K. (1985). Heterotrophic bacteria in near shore waters of Bay of Bengal and the Arabian Sea. Indian Journal of Marine Science, 14, 113–114.Google Scholar
  32. Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology and Biotechnology, 82, 233–247.CrossRefGoogle Scholar
  33. Prabhu, S. K., Subramanian, B., & Mahadevan, A. (1990). Occurrence and distribution of heterotrophic bacteria off Madras coast. Mahasagar-Bulletin of the National Institute of Oceanography, 23, 43–47.Google Scholar
  34. Prabhu, N. N., Santimano, M. C., & Garg, S. (2009). Studies on polyhydroxyalkanote production by a marine Bacillus sp. NQ-11/A2 isolated from continental shelf sediment. Journal of Current Sciences, 14, 265–273.Google Scholar
  35. Prabhu, N. N., Santimano, M. C., Bhosle, S. N., Mavinkurve, S., & Garg, S. (2010). Native granule associated SCL-PHA synthase from a marine derived Bacillus sp. NQ-11/A2. Antonie van Leeuwenhoek, 97, 41–50.CrossRefGoogle Scholar
  36. Priest, F.G., Goodfellow, M., Todd, C. (1988). A numerical classification of the genus Bacillus. Journal of General Microbiology, 134, 1847–1882.Google Scholar
  37. Rawte, T., & Mavinkurve, S. (2001). Biodegradable plastics—Bacterial polyhydroxyalkanoates. Indian Journal of Microbiology, 41, 233–245.Google Scholar
  38. Rawte, T., Padte, M., & Mavinkurve, S. (2002). Incidence of marine and mangrove bacteria accumulating polyhydroxyalkanoates on the mid-west coast of India. World Journal of Microbiology and Biotechnology, 18, 655–659.CrossRefGoogle Scholar
  39. Reddy, S. V., Thirumala, M., Reddy, T. V. K., & Mahmood, S. K. (2008). Isolation of bacteria producing polyhydroxyalkanoates (PHA) from municipal sewage sludge. World Journal of Microbiology and Biotechnology, 24, 2949–2955.CrossRefGoogle Scholar
  40. Reddy, S. V., Thirumala, R. M., & Mahmood, S. K. (2009). A novel Bacillus sp. accumulating poly (3-hydroxbutyrate-CO-3-hydroxyvalerate) from a single carbon substrate. Journal of Indian Microbiology and Biotechnology, 36, 837–843.CrossRefGoogle Scholar
  41. Rehm, B. H. A. (2007). Biogenesis of microbial Polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. Current Issues in Molecular Biology, 9, 41–62.Google Scholar
  42. Revol, J. F., Chanzy, H. D., Deslandes, Y., & Marchessault, R. H. (1989). High resolution electron microscopy of poly(β-hydroxybutyrate). Polymer, 30, 1973–1976.CrossRefGoogle Scholar
  43. Rohini, D., Phadnis, S., & Rawal, S. K. (2006). Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian Journal of Biotechnology, 5, 276–283.Google Scholar
  44. Sathiyanarayanan, G., Kiran, G. S., Selvin, J., & Saibaba, G. (2013). Optimiation of polyhydroxybutyrate production by marine Bacillus megateriumMSBN04 under solid state culture. International Journal of Biological Macromolecules, 60, 253–261.CrossRefGoogle Scholar
  45. Sheu, D-S., Lai, Y-W., Chang, R-C., & Chen, W-M. (2009). Detection of polyhydroxyalkanoate synthase activity on a polyacrylamide gel. Analytical Biochemistry, 393, 62–65.CrossRefGoogle Scholar
  46. Sneath, P. H. A., Mair, N. S., Sharpe, M. E., & Holt, J. G. (1986). Bergey’s manual of systematic bacteriology (Vol. 2, 2nd ed., pp. 1104–1129). Baltimore: Williams and Wilkins.Google Scholar
  47. Spiekermann, P., Rehm, B. H., Kalscheuer, R., Baumeister, D., & Steinbuchel, A. (1999). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Archives of Microbiology, 171, 73–80.CrossRefGoogle Scholar
  48. Steinbuchel, A., & Valentin, H. E. (1995). Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters, 128, 219–228.CrossRefGoogle Scholar
  49. Sudesh, K., Abe, H., Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Progess in Polymer Science, 25, 1503–1555.CrossRefGoogle Scholar
  50. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnology Advances, 25, 148–175.CrossRefGoogle Scholar
  51. Valappil, S. P., Boccaccini, A. R., Bucke, C., & Roy, I. (2007). Polyhydroxyalkanoates in Gram-positive bacteria: Insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek, 91, 1–17.CrossRefGoogle Scholar
  52. Wei, Y. H., Chen, W. C., Wu, H. S., & Janarthanan, O. M. (2011). Biodegradable and biocompatible biomaterial, polyhydroxybutyraate, produced by and indigenous Vibrio sp. BM-1 isolated from marine environment. Marine Drugs, 9, 615–624.CrossRefGoogle Scholar
  53. Weiner, R. M. (1997). Biopolymers from marine prokaryotes. Tibtech, 15, 390–427.CrossRefGoogle Scholar
  54. Wu, H. A., Sheu, D. S., & Lee, C. Y. (2003). Rapid differentiation between short-chain-length and medium-chain-length polyhydroxyalkanoate-accumulating bacteria with spectrofluorometry. Journal of Microbiological Methods, 53, 131–135.CrossRefGoogle Scholar
  55. Yu, J. (2007). Microbial production of bioplastics from renewable resources. In S.-T. Yang (Ed.), Bioprocessing for value-added products from renewable resources (pp. 585–610). Amsterdam: Elservier B.V.Google Scholar
  56. ZoBell, C. E. (1963). Domain of the marine microbiologist. In C. H. Oppenheimer (Ed.), Symposium on marine microbiology (pp. 3–24). Thomas: Springfield.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesBirla Institute of Technology and Science-PilaniZuarinagarIndia

Personalised recommendations