Advertisement

Response of Alkaliphilic Bacteria to Aromatic Amines

Chapter
  • 419 Downloads

Abstract

Aromatic amines are reported to be one of the most prominent environmental pollutants being released in the form of effluents or pesticides and are well known for their properties as potential mutagens as well as carcinogens. Aniline is an aromatic amine and is largely used as an intermediate in the synthesis of many synthetic organic compounds. Several azo dyes and nitroamine compounds on biotransformation produce aromatic amines like p-phenylenediamine, benzedene or aniline which can damage an ecosystem depending on the input quantities. Presence of such bioenvironmental amino aromatic contaminants is a serious threat and a danger to human health and other aquatic organisms as these combinations tend to be very resistant to degradation.

In the present study, attempts were made to investigate the response of alkaliphilic bacteria isolated from marine ecosystems of Goa to N, N-Diemthyl-1-naphthylamine (NND) and aniline used as model aromatic amines under alkaline conditions. Two potential halotolerant alkaliphiles, capable of tolerating high concentration of NND and aniline were isolated. Halomonas pacifica strain NK2 produced a biosurfactant in response to NND and Halomonas campanieinsis strain NRS-01 showed the production of a red-coloured steroid-like compound in the presence of high concentrations of aniline. Formation of the red compound was preceded with the aggregation of cells and production of a blue fluorescent protein, both observed only in the presence of cells, indicating the role of NRS-01 in the formation of these products. Such biotransformation products can be important bioindicators for the early detection of hydrocarbon pollution.

Keywords

Extremophiles Alkaliphiles Halomonas N, N-Dimethyl-1-Naphthylamine Aniline Biosurfactant Red compound 

References

  1. Ahmed, S., Javed, M. A., Tanvir, S., & Hameed, A. (2001). Isolation and characterization of a Pseudomonas strain that degrades 4-acetamidophenol and 4-aminophenol. Biodegradation, 12(5), 303–309.Google Scholar
  2. Ajithkumar, P. V., & Kunhi, A. A. M. (2000). Pathways for 3-chloro- and 4-chlorobenzoate ­degradation in Pseudomonas aeruginosa 3mT. Biodegradation, 11, 247–261.Google Scholar
  3. Annweiler, E., Michaelis, W., & Meckenstock, R. U. (2002). Identical ring cleavage products ­during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Applied and Environmental Microbiology, 68(2), 852–858.Google Scholar
  4. Anson, J. G., & Mackinnon, G. (1984). Novel Pseudomonas plasmid involved in aniline degradatio. Applied and Environmental Microbiology, 48(4), 868–869.Google Scholar
  5. Arahal, D. R., Dewhirst, F. E., Paster, B. J., Volcani, B. E., & Ventosa, A. (1996). Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Applied and Environmental Microbiology, 62(10), 3779–3786.Google Scholar
  6. Aranda, C., Godoy, F., Gonzalez, B., Homo, J., & Martinez, M. (1999). Effects of glucose and phenylalanine upon 2,4,6-trichlorophenol degradation by Pseudomonas paucimobilis S37 cells in a no-growth state. Microbios, 100(396), 73–82.Google Scholar
  7. Atkinson, S., Throup, J. P., Stewart, G. S., & Williams, P. (1999). A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Molecular Microbiology, 33(6), 1267–1277.Google Scholar
  8. Bachofer, R., & Lingens, F. (1975). Conversion of aniline into pyrocatechol by a Nocardia sp.; Incorporation of oxygen—18. FEBS Letters, 50(2), 288–290.Google Scholar
  9. Bhat, T., Singh, B., & Sharma, O. (1998). Microbial degradation of tannins—a current perspective. Biodegradation, 9(5), 343–357.Google Scholar
  10. Boon, N., Goris, J., De Vos, P., Verstraete, W., & Top, E. M. (2000). Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading comamonas testosteroni strain, I2gfp. ­Applied and Environmental Microbiology, 66(7), 2906–2913.Google Scholar
  11. Boon, N., Goris, J., De Vos, P., Verstraete, W., & Top, E. M. (2001). Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the comamonadaceae. Applied and Environmental Microbiology, 67(3), 1107–1115.Google Scholar
  12. Borchardt, S. A., Allain, E. J., Michels, J. J., Stearns, G. W., Kelly, R. F., & McCoy, W. F. (2001). Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Applied and Environmental Microbiology, 67(7), 3174–3179.Google Scholar
  13. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.Google Scholar
  14. Brennan, R. J., & Schiestl, R. H. (1997). Aniline and its metabolites generate free radicals in yeast. Mutagenesis, 12(4), 215–220.Google Scholar
  15. Burgess, N. A., Kirke, D. F., Williams, P., Winzer, K., Hardie, K. R., Meyers, N. L., Aduse-Opoku, J., Curtis, M. A., & Camara, M. (2002). LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology (Reading, England), 148(Pt 3), 763–772.Google Scholar
  16. Camara, M., Daykin, M., & Chhabra, S. R. (1998). Detection, purification and synthesis of n-acylhomoserine lactone quorum sensing signal molecules. Methods in Microbiology, 27, 319–330.Google Scholar
  17. Cartwright, N. J., & Cain, R. B. (1958). Bacterial degradation of the nitrobenzoic acids. Biochemical Journal, 71, 248–261.Google Scholar
  18. Chen, H., Fujita, M., Feng, Q., Clardy, J., & Fink, G. R. (2004). Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 5048–5052.Google Scholar
  19. Chung, K-T., Kirkovsky, L., Kirkovsky, A., & Purcell, W. P. (1997). Review of mutagenicity of monocyclic aromatic amines: Quantitative structure–activity relationships. Mutation Research/Reviews in Mutation Research, 387(1), 1–16.Google Scholar
  20. Combes, R. D., & Haveland-Smith, R. B. (1982). A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutation Research/Reviews in Genetic Toxicology, 98(2), 101–243.Google Scholar
  21. Crawford, R. L. (1995). The microbiology and treatment of nitroaromatic compounds. Current Opinion in Biotechnology, 6(3), 329–336.Google Scholar
  22. Crebelli, R., Conti, L., Carere, A., & Zito, R. (1981). Mutagenicity of commercial p-phenylenediamine and of an oxidation mixture of p-phenylenediamine and resorcinol in Salmonella ­typhimurium TA98. Food and Cosmetics Toxicology, 19(0), 79–84.Google Scholar
  23. Crews, D., Bergeron, J. M., & McLachlan, J. A. (1995). The role of estrogen in turtle sex ­determination and the effect of PCBs. Environmental Health Perspectives, 103, 73–77.Google Scholar
  24. Denef, V. J., Patrauchan, M. A., Florizone, C., Park, J., Tsoi, T. V., Verstraete, W., Tiedje, J. M., & Eltis, L. D. (2005). Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. Journal of Bacteriology, 187(23), 7996–8005.Google Scholar
  25. Dhar, K., & Rosazza, J. P. (2000). Purification and characterization of Streptomyces griseus ­catechol O-methyltransferase. Applied and Environmental Microbiology, 66(11), 4877–4882.Google Scholar
  26. Diaz, E. (2004). Bacterial degradation of aromatic pollutants: A paradigm of metabolic versatility. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 7(3), 173–180.Google Scholar
  27. Díaz, E., Ferrández, A., Prieto, M. A., & García, J. L. (2001). Biodegradation of aromatic compounds byEscherichia coli. Microbiology and Molecular Biology Reviews, 65(4), 523–569.Google Scholar
  28. Doulati, A. F., Badii, K., Yousefi, L. N., Mahmoodi, N. M., Arami, M., Shafaei, S. Z., & Mirhabibi, A. R. (2007). Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel, a low-cost adsorbent. Dyes and Pigments, 73(2), 178–185.Google Scholar
  29. Drzyzga, O., Schmidt, A., & Blotevogel, K. (1996). Cometabolic transformation and cleavage of nitrodiphenylamines by three newly isolated sulfate-reducing bacterial strains. Applied and Environmental Microbiology, 62(5), 1710–1716.Google Scholar
  30. Duckworth, A. W., Grant, W. D., Jones, B. E., Meijer, D., Marquez, M. C., & Ventosa, A. (2000). Halomonas magadii sp. nov., a new member of the genus Halomonas, isolated from a soda lake of the East African Rift Valley. Extremophiles, 4(1), 53–60.Google Scholar
  31. Emerson, D., Chauhan, S., Oriel, P., & Breznak, J. (1994). Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Archives of Microbiol, 161(6), 445–452.Google Scholar
  32. Engelhardt, G., Wallnöfer, P., Fuchsbichler, G., & Baumeister, W. (1977). Bacterial transformations of 4-chloroaniline. Chemosphere, 6(2–3), 85–92.Google Scholar
  33. Farrell, A., & Quilty, B. (2002). Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. Journal of industrial microbiology & biotechnology, 28(6), 316–324.Google Scholar
  34. Fewson, C. A. (1988). Biodegradation of xenobiotic and other persistent compounds: The causes of recalcitrance. Trends in Biotechnology, 6(7), 148–153.Google Scholar
  35. Finley, K. T. (2010). The addition and substitution chemistry of quinones. In S. Patai (ed.), Quinonoid compounds (1974) (Vol. 2, pp. 877–1144). New York: Wiley.Google Scholar
  36. Fujii, T., Takeo, M., & Maeda, Y. (1997). Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strian YAA. Microbiology, 143, 93–99.Google Scholar
  37. Fukumori, F., & Saint, C. (1997). Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1). Journal of Bacteriology, 179(2), 399–408.Google Scholar
  38. Galinski, E. A., Pfeiffer, H. P., & Truper, H. G. (1985). 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. European Journal of Biochemistry, 149(1), 135–139.Google Scholar
  39. Garcia, M. T., Mellado, E., Ostos, J. C., & Ventosa, A. (2004). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 5), 1723–1728.Google Scholar
  40. Garcia, M. T., Ventosa, A., & Mellado, E. (2005). Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiology Ecology, 54(1), 97–109.Google Scholar
  41. Gee, J. M., Lund, B. M., Metcalf, G., & Peel, J. L. (1980). Properties of new alkaliphilic bacteria. Journal of General Microbiology, 117, 9–17.Google Scholar
  42. Gilbert, E. S., & Crowley, D. E. (1997). Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Applied and Environmental Microbiology, 63(5), 1933–1938.Google Scholar
  43. Goerke, H., Weber, K., Bornemann, H., Ramdohr, S., & Plotz, J. (2004). Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota. Marine Pollution Bulletin, 48(3–4), 295–302.Google Scholar
  44. Grady, C. P. Jr. (1985). Biodegradation: Its measurement and microbiological basis. Biotechnology and bioengineering, 27(5), 660–674.Google Scholar
  45. Gray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1–12), 46–52.Google Scholar
  46. Gribble, G. W. (2003). The diversity of naturally produced organohalogens. Chemosphere, 52(2), 289–297.Google Scholar
  47. Harwood, C. S., & Gibson, J. (1997). Shedding light on anaerobic benzene ring degradation: A process unique to prokaryotes? Journal of Bacteriology, 179(2), 301–309.Google Scholar
  48. Hegde, R. S., & Fletcher, J. S. (1996). Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. ­Chemosphere, 32(12), 2471–2479.Google Scholar
  49. Herbes, S. E., & Schwall, L. R. (1978). Microbial transformation of polycyclic aromatic­ hydrocarbons in pristine and petroleum-contaminated sediments. Applied and Environmental Microbiology, 35(2), 306–316.Google Scholar
  50. Higham, D. P., Sadler, P. J., & Scawen, M. D. (1986). Cadmium-binding proteins in Pseudomonas putida: Pseudothioneins. Environmental Health Perspectives, 65, 5–11.Google Scholar
  51. Hinteregger, C., & Streichsbier, F. (1997). Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnology Letters, 19(11), 1099–1102.Google Scholar
  52. Hoffman, L. R., D’Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., & Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436(7054), 1171–1175.Google Scholar
  53. Holcombe, G. W., Fiandt, J. T., & Phipps, G. L. (1980). Effects of pH increases and sodium chloride additions on the acute toxicity of 2,4-dichlorophenol to the fathead minnow. Water Research, 14(8), 1073–1077.Google Scholar
  54. Horikoshi, K. (1991). Isolation and classification of Alkaliphilic microorganisms. In Microorganisms in alkaline environment (pp. 10–24). Japan: VCH.Google Scholar
  55. Horvath, R. S. (1973). Enhancement of co-metabolism of chlorobenzoates by the co-substrate enrichment technique. Applied Microbiology, 25(6), 961–963.Google Scholar
  56. Hough, D. W., & Danson, M. J. (1999). Extremozymes. Current Opinion in Chemical Biology, 3(1), 39–46.Google Scholar
  57. Jebbar, M., Talibart, R., Gloux, K., Bernard, T., & Blanco, C. (1992). Osmoprotection of ­Escherichia coli by ectoine: Uptake and accumulation characteristics. Journal of Bacteriology, 174(15), 5027–5035.Google Scholar
  58. Jin, Q., Hu, Z., Jin, Z., Qiu, L., Zhong, W., & Pan, Z. (2012). Biodegradation of aniline in an ­alkaline environment by a novel strain of the halophilic bacterium, Dietzia natronolimnaea JQ-AN. Bioresource Technology, 117, 148–154.Google Scholar
  59. Kishino, T., & Kobayashi, K. (1995). Relation between toxicity and accumulation of chlorophenols at various pH, and their absorption mechanism in fish. Water Research, 29(2), 431–442.Google Scholar
  60. Klebensberger, J., Rui, O., Fritz, E., Schink, B., & Philipp, B. (2006). Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Archives of Microbiology, 185(6), 417–427.Google Scholar
  61. Konopka, A., Knight, D., & Turco, R.F. (1989). Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources. Applied and Environmental Microbiology, 55(2):385–389.Google Scholar
  62. Kulkarni, M., & Chaudhari, A. (2006). Biodegradation of p-nitrophenol by P. putida. Bioresource Technology, 97(8), 982–988.Google Scholar
  63. Li, J., Jin, Z., & Yu, B. (2010). Isolation and characterization of aniline degradation slightly ­halophilic bacterium, Erwinia sp. Strain HSA 6. Microbiological Research, 165(5), 418–426.Google Scholar
  64. Lim, J. M., Yoon, J. H., Lee, J. C., Jeon, C. O., Park, D. J., Sung, C., & Kim, C. J. (2004). Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated from a solar ­saltern in Korea. International Journalof Systematic and Evolutionary Microbiology, 54(Pt 6), ­2037–2042.Google Scholar
  65. Liu, Z., Yang, H., Huang, Z., & Liu, S. J. (2002). Degradation of aniline by newly isolated, ­extremely aniline-tolerant Delftia sp. AN3. Applied Microbiology and Biotechnology, 58(5), 679–682.Google Scholar
  66. Lyons, C. D., Katz, S., & Bartha, R. (1984). Mechanisms and pathways of aniline elimination from aquatic environments. Applied and Environmental Microbiology, 48(3), 491–496.Google Scholar
  67. Maltseva, O., & Oriel, P. (1997). Monitoring of an alkaline 2,4,6-trichlorophenol-degrading enrichment culture by DNA fingerprinting methods and isolation of the responsible organism, Haloalkaliphilic Nocardioides sp. strain M6. Applied and Environmental Microbiology, 63(11), 4145–4149.Google Scholar
  68. Margesin, R., & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in ­extreme environments. Applied Microbiology and Biotechnology, 56(5–6), 650–663.Google Scholar
  69. Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199.Google Scholar
  70. Mwatha, W. E., & Grant, W. D. (1993). Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon Isolated from Lake Magadi, Kenya. International Journal of Systematic Bacteriology, 43(3), 401–404.Google Scholar
  71. Narender, R. G., & Prasad, M. N. V. (1990). Heavy metal-binding proteins/peptides: Occurrence, structure, synthesis and functions. A review. Environmental and Experimental Botany, 30(3), 251–264.Google Scholar
  72. Nfon, E., & Cousins, I. T. (2006). Interpreting time trends and biomagnification of PCBs in the Baltic region using the equilibrium lipid partitioning approach. Environmental pollution ­(Barking, Essex: 1987), 144(3), 994–1000.Google Scholar
  73. Nicholson, C. A., & Fathepure, B. Z. (2004). Biodegradation of benzene by halophilic and ­halotolerant bacteria under aerobic conditions. Applied and Environmental Microbiology, 70(2), 1222–1225.Google Scholar
  74. Obinna, C. N., Shalom, N-C., & Olukayode, O. A., (2008). Biodegradation potential of two ­Rhodococcus strains capable of utilizing anine as carbon source in a tropical ecosysted. ­Research Journal of Microbiology, 3(2), 99–104.Google Scholar
  75. Oren, A. (1999). Bioenergetic aspects of halophilism. Microbiology and Molecular Biology ­Reviews, 63(2), 334–348.Google Scholar
  76. Paris, D. F., & Wolfe, N. L. (1987). Relationship between properties of a series of anilines and their transformation by bacteria. Applied Environmental Microbiology, 53(5), 911–916.Google Scholar
  77. Pasic, L., Bartual, S. G., Ulrih, N. P., Grabnar, M., & Velikonja, B. H. (2005). Diversity of ­halophilic archaea in the crystallizers of an adriatic solar saltern. FEMS Microbiology Ecology, 54(3), 491–498.Google Scholar
  78. Peres, C. M., Naveau, H., & Agathos, S. N. (1998). Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed. Applied Microbiology and Biotechnology, 49(3), 343–349.Google Scholar
  79. Peyton, B. M., Wilson, T., & Yonge, D. R. (2002). Kinetics of phenol biodegradation in high salt solutions. Water Research, 36(19), 4811–4820.Google Scholar
  80. Quillaguaman, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T., & Delgado, O. (2004). ­Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a ­Bolivian hypersaline lake. International Journal of Systematic and Evolutionary Microbiology, 54(Pt 3), 721–725.Google Scholar
  81. Rădulescu, C., Hossu, A. M., Ioniţă, I., & Moater, E. I. (2008). Synthesis and characterization of new cationic dyes for synthetic fibres. Dyes and Pigments, 76(2), 366–371.Google Scholar
  82. Raymond, D. G. M., & Alexander, M. (1971). Microbial metabolism and cometabolism of nitrophenols. Pesticide Biochemistry and Physiology, 1(2), 123–130.Google Scholar
  83. Reber, H., & Kaiser, P. (1981). Regulation of the utilization of glucose and aromatic substrates in four strains of Pseudomonas putida. Archives of Microbiology, 130(3), 243–247.Google Scholar
  84. Reddy, G. S., Raghavan, P. U., Sarita, sN. B., Prakash, J. S., Nagesh, N., Delille, D., & Shivaji, S. (2003). Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles, 7(1), 55–61.Google Scholar
  85. Rentz, J. A., Alvarez, P. J., & Schnoor, J. L. (2005). Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environmental ­Pollution (Barking, Essex: 1987), 136(3), 477–484.Google Scholar
  86. Richter, S., & Nagel, R. (2007). Bioconcentration, biomagnification and metabolism of 14C-terbutryn and 14C-benzo[a]pyrene in Gammarus fossarum and Asellus aquaticus. Chemosphere, 66(4), 603–610.Google Scholar
  87. Sandermann, H. Jr., Heller, W., Hertkorn, N., Hoque, E., Pieper, D., & Winkler, R. (1998). A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 64(9), 3305–3312.Google Scholar
  88. Sangodkar, U. M. X., & Mavinkurve, S. (1991). Glucose influenced degradation of santonin in Pseudomonas sp. strain (ATCC 43388). Acta Biotechnologica, 11(1), 67–71.Google Scholar
  89. Sarnaik, S., & Kanekar, P. (1995). Bioremediation of colour of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. Journal of ­Applied Bacteriology, 79(4), 459–469.Google Scholar
  90. Satyanarayana, T., Raghukumar, C., & Shivaji, S. (2005). Extremophilic microbes: Diversity and perspectives. Current Science, 89(1), 78–90.Google Scholar
  91. Shanker, V., Rayabandla, S., Kumavath, R., Chintalapati, S., & Chintalapati, R. (2006). Light-dependent transformation of aniline to indole esters by the purple bacterium Rhodobacter sphaeroides OU5. Current Microbiology, 52(6), 413–417.Google Scholar
  92. Sheludchenko, M. S., Kolomytseva, M. P., Travkin, V. M., Akimov, V. N., & Golovleva, L. A. (2005). Degradation of aniline by Delftia tsuruhatensis 14S in batch and continuous processes. Prikladnaia Biokhimiia i Mikrobiologiia, 41(5), 530–534.Google Scholar
  93. Shriner, R. L., Fuson, F. C., Curtin, Y. D., & Morrill, T. C. (1980). Separations. In The systematic identification of organic compounds (6th ed., pp. 374–395). New York: Wiley.Google Scholar
  94. Sierra-Alvarez, R., & Lettinga, G. (1991). The effect of aromatic structure on the inhibition of acetoclastic methanogenesis in granular sludge. Applied Microbiology and Biotechnology, 34(4), 544–550.Google Scholar
  95. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85.Google Scholar
  96. Struijs, J., & Rogers, J. E. (1989). Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Applied and Environmental Microbiology, 55(10), 2527–2531.Google Scholar
  97. Su, W. W. (2005). Fluorescent proteins as tools to aid protein production. Microbial Cell Factories, 4, 12–17.Google Scholar
  98. Takenaka, S., Okugawa, S., Kadowaki, M., Murakami, S., & Aoki, K. (2003). The metabolic pathway of 4-aminophenol in Burkholderia sp. strain AK-5 differs from that of aniline and aniline with C-4 substituents. Applied and Environmental Microbiology, 69(9), 5410–5413.Google Scholar
  99. Tharakan, J. P., & Gordon, J. A. (1999). Cametabolic biotransformation of trinitrotoluene (tnt) supported by aromatic and non-aromatic cosubstrates. Chemosphere, 38(6), 1323–1330.Google Scholar
  100. Thorn, K. A., Goldenberg, W. S., Younger, S. J., & Weber, E. J. (1996). Covalent binding of aniline to humic substances. In Humic and fulvic acids (vol. 651, pp. 299–326). (ACS Symposium Series, vol 651). Washington: American Chemical Society.Google Scholar
  101. Tindall, B. J., Ross, H. N. M., & Grant, W. D. (1984). Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Systematic and Applied Microbiology, 5(1), 41–57.Google Scholar
  102. Tweedy, B. G., Loeppky, C., & Ross, J. A. (1970). Metobromuron: Acetylation of the aniline moiety as a detoxification mechanism. Science, 168(3930), 482–483.Google Scholar
  103. Van Herwijnen, R., Wattiau, P., Bastiaens, L., Daal, L., Jonker, L., Springael, D., Govers, H. A., & Parsons, J. R. (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Research in Microbiology, 154(3), 199–206.Google Scholar
  104. Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544.Google Scholar
  105. Vettery, W. (2002). Environmental occurrence of Q1, a C9H3Cl7N2 compound, that has been identified as a natural bioaccumulative organochlorine. Chemosphere, 46(9–10), 1477–1483.Google Scholar
  106. Wainwright, M. (2008). Dyes in the development of drugs and pharmaceuticals. Dyes and ­Pigments, 76(3), 582–589.Google Scholar
  107. Walker, N., & Harris, D. (1969). Aniline utilization by a soil pseudomonad. Journal of Applied Bacteriology, 32(4), 457–462.Google Scholar
  108. Wild, D. (1990). A novel pathway to the ultimate mutagens of aromatic amino and nitro ­compounds. Environmental Health Perspectives, 88, 27–31.Google Scholar
  109. Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: ­Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4576–4579.Google Scholar
  110. Woolard, C. R., & Irvine, R. L. (1995). Treatment of hypersaline wastewater in the sequencing batch reactor. Water Research, 29(4), 1159–1168.Google Scholar
  111. Wu, R. S. S. (1999). Eutrophication, water borne pathogens and xenobiotic compounds: ­Environmental risks and challenges. Marine Pollution Bulletin, 39(1–12), 11–22.Google Scholar
  112. Xiao, C., Ning, J., Yan, H., Sun, X., & Hu, J. (2009). Biodegradation of aniline by a newly isolated Delftia sp. XYJ6. Chinese Journal of Chemical Engineering, 17(3), 500–505.Google Scholar
  113. You, I. S., & Bartha, R. (1982). Stimulation of 3,4-dichloroaniline mineralization by aniline. ­Applied and Environmental Microbiology, 44(3), 678–681.Google Scholar
  114. Yumoto, I., Hirota, K., Nodasaka, Y., Tokiwa, Y., & Nakajima, K. (2008). Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. International Journal of Systematic and Evolutionary Microbiology, 58(4), 901–905.Google Scholar
  115. Zeyer, J., & Kearney, P. C. (1982). Microbial metabolism of propanil and 3,4-dichloroaniline. Pesticide Biochemistry and Physiology, 17(3), 224–231.Google Scholar
  116. Zhuang, R., Zhong, W., Yao, J., Chen, H., Tian, L., Zhou, Y., Wang, F., Bramanti, E., & Zaray, G. (2007). Isolation and characterization of aniline-degrading Rhodococcus sp. strain AN5. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Eenvironmental Engineering, 42(13), 2009–2016.Google Scholar
  117. Ziagova, M., & Liakopoulou-Kyriakides, M. (2007). Comparison of cometabolic degradation of 1,2-dichlorobenzene by Pseudomonas sp. and Staphylococcus xylosus. Enzyme and Microbial Technology, 40(5), 1244–1250.Google Scholar
  118. Zissi, U., Lyberatos, G., & Pavlou, S. (1997). Biodegradation of p-aminoazobenzene by ­Bacillus subtilis under aerobic conditions. Journal of Industrial Microbiology and Biotechnology, 19(1), 49–55.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Fomento ResourcesPanjimIndia

Personalised recommendations