Biodegradation of Aromatic Compounds by Alkaliphilic Bacteria



Eubacteria belonging to diverse genera with the ability to degrade toxic aliphatic and aromatic hydrocarbons along with xenobiotics play an important role in bioremediation. Degradation of aromatic compounds at alkaline pH is significant as alkaliphilic bacteria are more tolerant to toxic compounds and have better bioavailability that can improve the efficiency of biodegradation in control and removal of toxic pollutants. Mangroves are highly reproductive ecosystems which host a wide range of coastal and offshore marine organisms and provide a unique ecological niche for diverse bacterial communities.

In the present study, 141 alkaliphilic bacteria were isolated from mangrove ecosystems of Goa with 20 % being obligate alkaliphiles. 98 % of the cultures were Gram-positive with 54 % of the alkaliphilic cultures belonging to the genus Bacillus, 21 % to Corynebacterium, 7 % each to Micrococcus and Actinomycetes. The only obligate Gram-negative alkaliphile was identified as Flavobacterium on the basis of biochemical and molecular analysis. When screened for degradation of aromatic compounds, all obligate alkaliphiles showed luxuriant growth when supplemented with sodium benzoate, phenol, tyrosine and phenylalanine as a sole source of carbon with few isolates utilising aniline, cresol, resorcinol, quinol and para-chloroaniline. Interestingly, Flavobacterium A-131 exhibited the formation of coloured intermediates when grown in sodium benzoate and tyrosine at alkaline pH. This novel isolate from a mangrove ecosystem, showing growth and metabolism of aromatic compounds at alkaline pH has wide potential in bioremediation.


Alkaliphilic bacteria Flavobacterium Sodium benzoate Tyrosine Benzoquinone Degradation Bioremediation 


  1. Abd-El-Haleem, D., Beshay, U., Abdelhamid, A., Moawad, H., Zaki, S. (2003). Effect of mixed nitrogen sources on biodegradation of phenol by immobilized Acinetobacter sp. strain W-17. African Journal of Biotechnology, 11, 5610–5615.Google Scholar
  2. Ahmed T., Othman, M., Sarwade, V., Gawai, K. R. (2012). Degradation of Anthracene by ­alkaliphilic bacterium Bacillus badius. Environment and Pollution, 1, 97–104.CrossRefGoogle Scholar
  3. Alva, V., & Peyton, B. (2003). Phenol and catechol biodegradation by the haloalkaliphile ­Halomonas campisalis: influence of pH and salinity. Environmental Science and Technology, 37, 4397–4400.CrossRefGoogle Scholar
  4. Bandhyopadhyay, K., Das, D., Maiti, B. R. (1999). Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation. Applied Microbiology and Biotechnology, 51, 891–895.CrossRefGoogle Scholar
  5. Banulescu, S. (2000). What Michael Jackson didn’t know about melanin., Iow. Accessed 8 March 2001.
  6. Barnett, J. A., & Hegeman, J. H. (1983). Characterisation of a brown pigment from Bacillus ­subtilis culture. Canadian Journal of Microbiology, 29, 309–315.CrossRefGoogle Scholar
  7. Bayley, R. C., & Barbour, M. G. (1984). The degradation of aromatic compounds by meta and ­gentisate pathways: biochemistry and regulation. In D. T. Gibson (Ed.), Microbial ­degradation of organic compounds. Microbiology Series (vol. 13., pp. 253–294). New York: Marcel Dekker.Google Scholar
  8. Blackburn, J. W., & Hafker, W. R. (1993). The impact of biochemistry, bioavailability and ­bioactivity on the selection of bioremediation techniques. Trends in Biotechnology, 11, ­328–333.CrossRefGoogle Scholar
  9. Bouwer, E. J., & Zchendir, A. J. B. (1993). Bioremediation of organic compounds: microbial ­metabolism to work. Trends in Biotechnology, 11, 360–367.CrossRefGoogle Scholar
  10. Chapman, P. J. (1972). An outline of reaction sequence used for the bacterial degradation of ­phenolic compounds. In Degradation of synthetic organic molecules in the biosphere (pp. ­17–55). Washington: National Academy of Sciences.Google Scholar
  11. Chen, W., Bruhlmann, F., Richis, R. D., Mulchandani, A. (1999). Engineering of improved ­microbes and enzymes for bioremediation. Current Opinion in Biotechnology, 10, 137–141.CrossRefGoogle Scholar
  12. Clement, P. D., Pieper, H., Gonzalez, B. (2001). Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutrophus JMO 134 (pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid.­ ­Microbiology, 147, 2141–2148.Google Scholar
  13. Crawford, R. L., Hutton, S. W., Chapman, P. J. (1975). Purification properties of gentisate 1,2-dioxygenase from Moraxella osloensis. Journal of Bacteriology, 121, 794–799.Google Scholar
  14. Dagley, S. (1971). Catabolism of aromatic compounds by microorganisms. In A. H. Rose, J. F. Wilkinson (Eds.), Advances in microbial physiology (vol. 6., pp. 1–46). London: Academic.Google Scholar
  15. Desai, R. S., Krishnamurthy, N. K., Mavinkurve, S., Bhosle, S. (2004). Alkaliphiles in estuarine mangrove regions of Goa, (Central west coast of India). Indian Journal of Marine Sciences, 33, 177–180.Google Scholar
  16. De Souza, M. L., Wackett, L. P., Sadowsky, M. J. (1998). The atz ABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP. Applied and Environmental Microbiology, 64, 2323–2326.Google Scholar
  17. Dickel, D., Haug, W., Knackmus, H. J. (1993). Biodegradation of nitrobenzene by a sequential anaerobic–aerobic process. Biodegradation, 4, 187–194.CrossRefGoogle Scholar
  18. Djordjeric, S. P., Chen, H., Batley, M., Redmond, T. W., Rolfer, B. G. (1987). Nitrogen fixing ­ability of exopolysaccharide synthesis mutants of Rhizobium sp strain NGR 234 and ­Rhizobium trifolin is restored by addition of hamologens exopolysaccharide. Applied and Environmental Microbiology, 169, 53–60.Google Scholar
  19. Ellis, B. M. L. (2000). Environmental biotechnology informatics. Current Opinion in Biotechnology, 11, 232–235.CrossRefGoogle Scholar
  20. Evans, W. C. (1971). Oxidation of phenol and benzoic acid by some soil bacteria. Journal of ­Biochemistry, 41, 373–382.Google Scholar
  21. Feist, C. F., & Hegeman, G. D. (1969). Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. Journal of Bacteriology, 100, 869–877.Google Scholar
  22. Finley, K. T. (1974). The addition and substitution chemistry of quinones. In S. Patai (Ed.), The chemistry of quinonoid compounds (vol. 1., pp. 877–1144). London: An Interscience Publication.Google Scholar
  23. Fuenmayor, S. L., Wild, M., Boyles, L., Williams, P. A. (1998). A gene cluster encoding steps in the conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. Journal of Bacteriology, 180, 2522–2530.Google Scholar
  24. Fukumori, F., & Saint, C. P. (1997). Nucleotide sequence and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1). Journal of Bacteriology, 179, 399–408.Google Scholar
  25. Garcia, M. L., Guffanti, A. A., Krulwich, T. A. (1983). Characterization of the Na + /H + antiporter of alkalophilic bacilli in vivo: ∆ψ-dependent22 Na + efflux from starved cells. Journal of ­Bacteriology, 156, 1151–1157.Google Scholar
  26. Gee, J. M., Lund, B. M., Metacalf, G., Peel, J. L. (1980). Properties of a new group of alkaliphilic bacteria. Journal of General Microbiology, 117, 9–17.Google Scholar
  27. Gibson, D. T., & Subramanian, V. (1984). Microbial degradation of aromatic compounds. In D.T. Gibson (Ed.), Microbial degradation of organic compounds. Microbioloy Series (vol. 13., pp. 181–252). New York: Marcel Dekker.Google Scholar
  28. Goodwin, T. W. (1979). Chemistry and biochemistry of plant pigments (2nd edn., pp. 207–231). London: AcademicGoogle Scholar
  29. Harpel, M. R., & Lipscomb, J. D. (1990). Gentisate 1,2-dioxygenase from Pseudomonas: ­purification, characterization and comparison of enzymes from Pseudomonas testosteroni and Pseudomonas acidovarans. Journal of Biological Chemistry, 265, 6301–6311.Google Scholar
  30. Hay, A. G., Dees, P. M., Sayler, G. S. (2001). Growth of a bacterial consortium on triclosan. FEMS Microbiology Ecology, 36, 105–112.CrossRefGoogle Scholar
  31. Hayaishi, O. (1966). Crystalline oxygenase of Pseudomonads. Bacteriological Reviews, 30, ­720–731.Google Scholar
  32. Hearing, V. J. Jr. (1987). Mammalian monophenol monooxygenase (Tyrosinase): Purification, properties and reactions catalysed. In S. Kaufmen (Ed.), Metabolism of aromatic amino acids and amines (vol. 142., pp. 154–165). Methods in Enzymology, Elsevier Inc.Google Scholar
  33. Horikoshi, K. (1991). Microorganisms in alkaline environments. New York: VCH.Google Scholar
  34. Hughes, E. T. L., Bayley, R. C., Skurray, R. A. (1984). Characterisation of a TOL-like plasmid from Alcaligenes eutrophus which controls expression of a chromosomally encoded p-cresol pathway. Journal of Bacteriology, 107, 468–475.Google Scholar
  35. Janssen, D. B., Oppentocht, V. E., Poelarands, G. (2001). Microbial dehalogenation. Current ­Opinion in Biotechnology, 12, 254–258.CrossRefGoogle Scholar
  36. Johan, E. T., Vlieg, V. H., Janssen, D. B. (2001). Formation and detoxification of reactive ­intermediates in the metabolites of chloroniated ethenes. Journal of Biotechnology, 85, 81–102.CrossRefGoogle Scholar
  37. Kanekar, P. P., Sarnaik, S. S., Kelkar, A. S. (1999). Bioremediation of phenol by alkaliphilic ­bacteria isolated from alkaline lake of Lonar, India. Journal of Applied Microbiology ­Symposium ­supplement, 85, 128–133.Google Scholar
  38. Kataeva, I. A., & Golovlea, L. A. (1990). Catechol 2,3-dioxygenase from Pseudomonas aeuroginosa. In M.E. Lidstrom (Ed.), Hydrocarbons and methylotrophy (vol. 188, pp. 115–121). Methods in Enzymology, Elsevier Inc.Google Scholar
  39. Kazumi, J., Haggblom, M., Young, L. Y. (1995). Degradation of monochlorinated and non-chlorinated aromatic compounds under iron reducing conditions. Applied and Environmental Microbiology, 61, 4069–4073.Google Scholar
  40. Kelley, S. K., Coyne, V. E., Sledjeski, D. D., Funqua, W. C., Weiner, R. M. (1990). Identification of tyrosinase from a periphytic marine bacterium. FEMS Microbiology Letters, 67, 275–280.CrossRefGoogle Scholar
  41. Kimura, N., & Tsuge, T. (1993). Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. Journal of Bacteriology, 175, 4427–4435.Google Scholar
  42. Kimura, H., Okamura, A., Kawaide, H. (1994). Oxidation of 3-, 7-, and 12-hydroxyl groups of cholic acid by an alkalophi1ic Bacillus sp. Bioscience Biotechno1ogy and Biochemistry, 58, 1002–1006.Google Scholar
  43. Kiran, B. S (2009). Distribution and biodegradation of PAH in contaminated sites of Hisar (India). Indian Journal of Experimental Biology, 47, 210–217.Google Scholar
  44. Kleinsteuber, S., Muller, R., Babel, W. (2001). Expression of the 2, 4-D degradative pathwayof pJP4 in an alkaliphilic moderately halophilic soda lake isolate Halomonas sp. EF-43. ­Extremophiles, 5, 375–384.CrossRefGoogle Scholar
  45. Kojima, Y., Itada, N., Hayaishi, O. (1961). Metapyrocatechase: a new catechol cleavage enzyme. Journal of Biological Chemistry, 236, 2223–2228.Google Scholar
  46. Krulwich, T. A. (1995). Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Molecular Microbiology, 15, 403–410.CrossRefGoogle Scholar
  47. Krulwich, T. A., & Guffanti, A. A. (1989). Alkalophilic bacteria. Annual Reviews of Microbiology, 43, 435–463.CrossRefGoogle Scholar
  48. Lerch, K. (1987). Monophenol monooxygenase from Neurospora crassa. In S. Kaufman (Ed.), Metabolism of aromatic amino acids and amines (vol. 142, pp. 165–169). Methods in Enzymology, Elsevier Inc.Google Scholar
  49. Liu, S., & Suflita, J. M. (1993). Ecology and evolution of microbial populations for bioremediation. Trends in Biotechnology, 11, 344–352.CrossRefGoogle Scholar
  50. Loidl, M., Hinteregger, C., Ditzelmueller, G., Ferschl, A., Streichsbier, F. (1990). Degradation of aniline and monochlorinated anilines by soil borne Pseudomonas acidovorans strains. Archvies of Microbiology, 155, 56–61.CrossRefGoogle Scholar
  51. Maeda, M., Roberts, M., Ohta, Y., Fuji, F., Travisano, M., Kudo, T. (1998). Isolation and ­characterization of a new aromatic compound degrading alkalotrophic bacteria. The Journal of General and Applied Microbiology, 44, 101–106.CrossRefGoogle Scholar
  52. Margalith, P.Z. (1992). Melanin pigments. In Pigment microbiology (pp. 1–29). London: Chapman and Hall.Google Scholar
  53. Margesin, R., & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in ­extreme environments. Applied Microbiology and Biotechnology, 56, 650–663.CrossRefGoogle Scholar
  54. Mason, H. S. (1953). Melanin pigments. In Myron Gordon (Edn). Pigment Cell Biology, 563–682. Academic Press New-York.Google Scholar
  55. Mayer, A. M., & Hazel, E. (1979). Polyphenol oxidases in plants. Phytochemistry, 18, 193–215.CrossRefGoogle Scholar
  56. Mishra, V., Lal, R., Srinivasan, S. (2001). Enzymes and operons mediating xenobiotic degradation in bacteria. Critical Reviews in Microbiology, 27, 133–166.CrossRefGoogle Scholar
  57. Murray, K., & Williams, P. A. (1974). Role of catechol and methylcatechol as inducers of aromatic metabolism in Pseudomonas putida. Journal of Bacteriology, 117, 1153–1157.Google Scholar
  58. Nakazawa, T., & Nakazawa, A. (1970). Pyrocatechase (Pseudomonas) In H. Tabor, C.W. Tabor (Eds.), Methods in enzymology (vol. 17A, pp. 518). New York: Academic.Google Scholar
  59. Nakazawa, T., & Yokoto, T. (1973). Benzoate metabolism in Pseudomonas putida (arvilla) mt-2. Demonstration of two tangential pathways. Journal of Bacteriology, 115, 161–167.Google Scholar
  60. Nakazawa, T., Nozaki, M., Hayaishi, O., Yamano, T. (1969). Studies on pyrocatechase II. ­Electrom spin resonance and other properties of iron in the active center. Journal of Biological ­Chemistry, 244, 119–125.Google Scholar
  61. Offlow, J. C. G., & Zolg, W. (1974). Improved procedure and colorimetric test for detection of ortho and meta cleavage of protocatechuic acid by Pseudomonas sp. Canadian Journal of Microbiology, 20, 1059–1061.CrossRefGoogle Scholar
  62. O’Leary, J. (1976). Aromatic compounds. In, contemporary organic chemistry (pp. 281–304).New York: Mc Graw Hill.Google Scholar
  63. Ornston, L. N. (1971). The conversion of catechol and protocatechuate to β-ketoadipate by ­Pseudomonas putida IV. Regulation. Journal of Biological Chemistry, 241, 3800–3811.Google Scholar
  64. Poelarends, G. T., Zandstra, M., Bosma, T., Kulakov, A., Larkin, M. J., Marchesi, J. R., ­Weightman, A. J., Jannsen, D. (2000). Haloalkane-utilizing Rhodococcus strain isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. Journal of Bacteriology, 182, 2725–2731.CrossRefGoogle Scholar
  65. Poh, C. L., & Bayley, R. C. (1980). Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes. Journal of Bacteriology, 143, 59–69.Google Scholar
  66. Pomerantz, S. H. (1966). The tyrosinase hydroxylase activity of mammalian tyrosinase. Journal of Biological Chemistry, 241, 161–168.Google Scholar
  67. Ramanathan, A. L., Singh, G., Mujumdar, J., Samal, A. C., Chauhan, R., Ranjan, R. K., Rajkumar, K., Santra, S. C. (2008). A study of microbial diversity and its interaction with nutrients in ­sediments of Sunderban mangroves. Indian Journal of Marine Sciences, 37, 159–165.Google Scholar
  68. Robertson, A. I. (1992). Tropical mangrove ecosystems. American Physiological Union. Accessed 8 March 2001.
  69. Ryoo, D., Shim, H., Canada, K., Barberi, P., Wood, T. K. (2000). Aerobic degradation of tetrachloroethylene by toluene-o-monooxygenase of Pseudomonas stutzeri OX1. Nature Biotechnology, 18, 775–778.CrossRefGoogle Scholar
  70. Ryoo, D., Shim, H., Arenghi, F. L. G., Barberi, P., Wood, T. K. (2001). Tetrochloroethylene, ­trichloroethylene and chlorinated phenols induce toluene-o-monooxygenase activity in ­Pseudomonas stutzeri UX1. Applied Microbiology and Biotechnology, 56, 545–549.CrossRefGoogle Scholar
  71. Sadasivan, L., & Neyra, C. A. (1987). Cyst production and brown pigment formation in aging cultures of Azospirillum brasilence ATCC 29145. Journal of Bacteriology, 169, 1670–1679.Google Scholar
  72. Sala, T., & Evans (1971). The meta-cleavage of catechol by Azotobacter species, 4-oxalocrotonate pathway. European Journal of Biochemistry, 20(3), 400–413.Google Scholar
  73. Sala-Trepat, J. M., Murray, K., Williams, P. A. (1972). The metabolic divergence in the meta ­cleavage of catechols by Pseudomonas putida NCIB 10015. European Journal of Biochemistry, 28, 347–356.CrossRefGoogle Scholar
  74. Sangodkar, U. M. X., Aldrich, T. L., Haugland, R. A., Janson, J., Rathmol, R. K., Chapman, P. J., Chakrabarty, A. M. (1989). Molecular basis of biodegradation of chloroaromatic compounds. Acta Biotechnologica, 9, 301–316.CrossRefGoogle Scholar
  75. Shimao, M., Onishi, S., Mizumori, S., Kato, N., Sakazawa, C. (1989). Degradation of G-chlorobenzoate by facultatively alkaliphilic Arthrobacter sp. Applied and Environmental ­Microbiology, 55, 478–482.Google Scholar
  76. Shivprasad, S., & Page, W. J. (1989). Catechol formation and melanisation by Na + ­dependent ­Azotobacter chroococcum: a protective mechanism of aeroadaptation. Applied and ­Environmental Microbiology, 55, 1811–1817.Google Scholar
  77. Smejkal, C.W., Vallaeys, T., Burton, K., Lappin-Scott, H.M. (2001). Characteisation of (R/S)-mecoprop [2-(2-methyl-4-chlorophenoxy) propionic acid]-degrading Alcaligenes sp. CS1 and Ralstonia sp. CS2 isolate from agricultural soils. Environmental Microbiology, 3, 288–293.CrossRefGoogle Scholar
  78. Sorokin, D.Y., Tourova, T., Lysenko, A., Kuenan, G. (2001). Microbial thiocyanate utilization under highly alkaline conditions. Applied and Environmental Microbiology, 67, 528–538.CrossRefGoogle Scholar
  79. Stanier, R. Y., & Ornston, L. N. (1973). The β-ketodipate pathway. Advances in Microbial ­Physiology, 9, 89–151.CrossRefGoogle Scholar
  80. Stevens, L. H., Pavelaar, E., Kolb, R. M., Pennings, Ed J. M., Smit, N. P. M. (1998). Tyrosine and cysteine are substances for black spot synthesis in potato. Phytochemistry, 49, 703–707.CrossRefGoogle Scholar
  81. Tanghe, T., Phooge, W., Verstraete, W. (1999). Isolation of bacterial strain able to degrade branched nonylphenol. Applied and Environmental Microbiology, 65, 746–751.Google Scholar
  82. Ushiba, Y., Takahora, Y., Ohta, H. (2003). Sphingobium amiense sp. nov., a novel nonylphenol degrading bacterium isolated from a river sediment. International Journal of Systematic and Evolutionary Microbiology, 53, 2045–2048.CrossRefGoogle Scholar
  83. Wackett, L. P., Sadowsky M. J., Martinez, B., Shapir, N. (2002). Biodegradation of atrazine and related s-triazine compounds: from enzymes to filed studies. Applied Microbiology and ­Biotechnology, 58, 39–45.CrossRefGoogle Scholar
  84. Wang X. B, Chi, N. Y., Tang, Y. Q., Tan, Y., Wu, G., Wu, X. L. (2011). Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresource Technology, 102, 7755–7761.CrossRefGoogle Scholar
  85. Watanabe, K. (2001). Microorganisms relevant to bioremediation. Current Opinion in Biotechnology, 12, 237–241.CrossRefGoogle Scholar
  86. Whiteley, A. S., & Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system. Applied and Environmental Microbiology, 66, 2400–2407.CrossRefGoogle Scholar
  87. Williams, P. A., & Murray, K. (1974). Metabolism of benzoate and the methylbenzoates by ­Pseudomonas putida (arvilla) mt-2; evidence for the existence of a TOL plasmid. Journal of Bacteriology, 120, 416–423.Google Scholar
  88. Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K., Suemori, A. (2003). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. International Journal of Systematic and Evolutionary Microbiology, 53, 1531–1536.CrossRefGoogle Scholar
  89. Zeyer, J., Wasserfallen, A., Timmis, K. (1985). Microbial mineralisation of ring-substituted aniline through an ortho-cleavage pathway. Applied and Environmental Microbiology, 5, 447–453.Google Scholar
  90. Zylstra, G. J., Bang, S. W., Newman, L. M., Perry, L. L. (2000). Microbial degradation of mononitrophenols and mononitrobenzoates. In J. C. Spain, J. B. Hughes, H. J. Knackmuss (Eds.), Biodegradation of nitroaromatic compounds and explosives (pp. 145–184). Boca Raton: CRC.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MicrobiologyPES’s Shri Ravi Sitaram Naik College of Arts and Science, FarmagudiPondaIndia

Personalised recommendations