Alkaliphilic Bacteria: Diversity, Physiology and Industrial Applications



Alkaliphilic bacteria are ubiquitous extremophiles representing a large number of bacterial genera and physiological types, but share common challenges that include cytoplasmic pH homeostasis and associated problems of bioenergetic work. Studies on alkaliphiles have intensified as scientists have recognized their potential in industrial and biotechnological applications, particularly, their ability to produce enzymes with novel characteristics.

Ecological niches ranging from alkaline and nonalkaline environments were sampled to study the biodiversity of alkaliphilic bacteria. Interestingly, all the econiches, including acidic soil, showed the presence of alkaliphilic bacteria belonging to the Gram-positive group, with diverse variations in cultural and morphological features. These isolates possessed enzymes such as amylase, protease, lipase and cellulase, with many isolates possessing multiple enzyme activity at alkaline pH. Two potential isolates, identified as Bacillus lehensis strain SB-D and Bacillus halodurans strain SB-W required sodium for their growth and their internal pH was two units less as compared to external pH. Further, they possessed high cytoplasmic buffering capacities absent in neutrophilic cultures. B. lehensis SB-D produced a viscous exopolymer (EP), separated as a spoolable material on addition of isopropanol, thereby resulting in the loss of viscosity of culture supernatant. The culture broth and cells of B. lehensis SB-D showed emulsification property and the EP was found to be a complex glycolipid with strong metal adsorption and adhesive property for glass and paper. These eubacteria, therefore, hold immense potential for the production of enzymes active at alkaline pH and bioactive compounds.


Extremophiles Alkaliphiles Buffering capacities Bacillus lehensis Bacillus halodurans Exopolymer 


  1. Aino, K., Hirota, K., Matsuno, T., Morita, N., Nodasaka, Y., Fujiwara, T., Matsuyama, H., ­Yoshimune, K., & Yumoto, I. (2008). Bacillus polygoni sp. nov., a moderately halophilic, ­non-motile obligate alkaliphile isolated from indigo balls. International Journal of Systematic and Evolutionary Microbiology, 58, 120–124.Google Scholar
  2. Aizawa, T., Makoto, U., Noriyuki, I., Mutsuyasu, N., & Michio, S. (2010). Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). International Journal of Systematic and Evolutionary Microbiology, 60, 61–66.Google Scholar
  3. Aono, R., & Horikoshi, K. (1991). Carotenes produced by the alkalophilic yellow pigmented strains of Bacillus. Agricultural and Biological Chemistry, 55, 2643–2645.Google Scholar
  4. Bahm, Y. S., Park, J. M., Bai, D. H., Takase, S., & Yu, J. H. (1998). YUA001, a novel aldose ­reductase inhibitor isolated from alkaliphilic Corynebacterium sp. YUA 25. Taxonomy, ­fermentation, isolation and characterization. Journal of Antibiotics, 51, 902–907.Google Scholar
  5. Banciu, H. L., Sorokin, D. Y., Tourova, T. P., Galinski, E. A., Muntyan, M. S., Kuenen, J. G., & Muyzer, G. (2008). Influence of salts and pH on growth and activity of a novel facultatively ­alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing ­Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes. Extremophiles: life under extreme conditions, 12, 391–404.Google Scholar
  6. Bar-or, Y., & Shilo, M. (1987). Characterisation of macromolecular flocculants produced by ­Phormidium sp. Strain J-1 and by Anabaenopsis circularis PCC 6720. Applied and Environmental Microbiology, 53, 2226–2230.Google Scholar
  7. Bhushan, B. (2000). Production and characterisation of a thermostable chitinase from a new ­alkalophilic Bacillus sp BG-11. Journal of Applied Microbiology, 88, 800–808.Google Scholar
  8. Bhushan, B., Dosanjh, N. S., Kumar, K., & Hoondal, G. S. (1994). Lipase production from ­alkalophilic yeasts sp. by solid state fermentation. Biotechnology Letters, 16, 841–842.Google Scholar
  9. Blanco, K. C., de Lima, C. J. B., Monti, R., Martins Jr., J., Bernardi, N. S., & Contiero, J. (2012). Bacillus lehensis-an alkali-tolerant bacterium isolated from cassava starch wastewater: ­Optimization of parameters for cyclodextrin glycosyl transferase production. Annals of ­Microbiology, 62, 329–337.Google Scholar
  10. Borgave, S. B., Joshi, A. A., Kelkar, A. S., Kanekar, P. P. (2012). Screening of alkaliphilic, haloalkaliphilic bacteria and actinomycetes from alkaline soda lake of Lonar, India for antimicrobial activity. International Journal of Pharma and Bio Sciences, 3, 258–274.Google Scholar
  11. Borkar, S., & Bhosle, S. (2003). Alkaliphiles: microorganisms in alkaline environments. In P. C. Trivedi (Ed.), Advances in microbiology (pp. 175–209). Jodhpur: Scientific Publishers.Google Scholar
  12. Borkar, S., Nagarsekar, Y., & Bhosle, S. (2003). Alkaliphilic and alkalitolerant organisms from an agrochemical factory. Asian Journal of Microbiology Biotechnology and Environmental Sciences, 5, 187–191.Google Scholar
  13. Borsodi, A. K., Márialigeti, K., Szabo, G., Palatinszky, M., Pollak, B. Z., Kovacs, A. L., Schumann, P., & Toth, E. M. (2008). Bacillus aurantiacus sp. nov., an alkaliphilic and moderately ­halophilic bacterium isolated from Hungarian soda lakes. International Journal of Systematic and Evolutionary Microbiology, 58, 845–851.Google Scholar
  14. Boyer, E. W., & Ingle, M. B. (1972). Extracellular alkaline amylase from a Bacillus species. ­Journal of Bacteriology, 110, 992–1000.Google Scholar
  15. Cao, J., Zheng, L., & Chen, S. (1992). Screening of pectinase producer from alkalophilic ­bacteria and study on its potential application in degumming of ramie. Enzyme and Microbial ­Technology, 14, 1013–1016.Google Scholar
  16. Chauthaiwale, J., & Rao, M. (1994). Production and purification of extracellular D-xylose ­isomerase from an alkaliphilic, thermophilic Bacillus sp. Applied and Environmental ­Microbiology, 60, 4495–4499.Google Scholar
  17. Collins, M. D., Lund, B. M., Farrow, J. A. E., & Schliefer, K. H. (1983). Chemotaxonomic study of an alkaliphilic bacterium Exiguobacterium aurantiacum gen. nov. sp. nov. Journal of General Microbiology, 129, 2037–2042.Google Scholar
  18. Cook, M. G., Russell, J. B., Reichert, A., Wiegel, J. (1996). The intracellular pH of Clostridium paradoxium, an anaerobic alkalophilic and thermophilic bacterium. Applied and Environmental Microbiology, 62, 4576–4579.Google Scholar
  19. De Graaff, M., Bijmans, M. F. M., Abbas, B., Euverink, G.-J. W., Muyzer, G., & Janssen, A. J. H. (2011). Biological treatment of refinery spent caustics under halo-alkaline conditions. ­Bioresource Technology, 102, 7257–7264.Google Scholar
  20. Dimitrov, P. L., Kambourova, M. S., Mandeva, R. D., & Emanuilova, E. I. (1997). Isolation and characterization of xylan-degrading alkali-tolerant thermophiles. FEMS Microbiology Letters, 157, 27–30.Google Scholar
  21. Dunkley, E. A., Guffanti, A. A., Clejan, S., & Krulwich, T. A. (1991). Facultative ­alkaliphiles lack fatty acid desaturase activity and loose the ability to grow at near neutral pH when ­supplemented with unsaturated fatty acid. Journal of Bacteriology, 173, 1331–1334.Google Scholar
  22. Ferguson, S. A., Keis, S., & Cook, G. M. (2006). Biochemical and molecular characterization of a Na +-translocating F1F0-ATPase from the thermo alkaliphilic bacterium Clostridium ­paradoxum. Journal of Bacteriology, 18, 5045–5054.Google Scholar
  23. Florenzano, G., Sili, C., Pelosi, E., & Vincenzine, M. (1985). Cyanospira rippkae and Cyanospira capsulata (gen. nov. and sp. nov.): New filamentous heterocystous cyanobacteria from Magadi lake (Kenya). Archives of Microbiology, 140, 301–306.Google Scholar
  24. Fujinami, S., Terahara, N., Krulwich, T. A., & Ito, M. (2009). Motility and chemotaxis in ­alkaliphilic Bacillus species. Future Microbiology, 4, 1137–1149.Google Scholar
  25. Fujisawa, M., Fackelmayer, O., Liu, J., Krulwich, T. A., & Hicks, D. B. (2010). The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant. Journal of Biological Chemistry, 285, 32105–32115.Google Scholar
  26. Fujiwara, N., Yamamoto, K., & Masui, A. (1991). Utilization of thermostable alkaline protease from an alkalophilic thermophile for the recovery of silver from used X-ray film. Journal of Fermentation and Bioengineering, 72, 306–308.Google Scholar
  27. Garg, A. P., Roberts, J. C., & McCarthy, A. J. (1998). Bleach boosting effect of cellulase free ­xylanase of Streptomyces thermoviolaceus xylanase preparations on birchwood kraft pulp. ­Enzyme and Microbial Technology, 18, 261–267.Google Scholar
  28. Gee, J. M., Lund, B. M., Metcalf, G., & Peel, J. L. (1980). Properties of a new group of alkalophilic bacteria. Journal of General Microbiology, 117, 9–17.Google Scholar
  29. Georganta, G., Kaneko, T., Nakamura, N., Kudo, T., & Horikoshi, K. (1993). Isolation and partial properties of cyclomaltodextrin glucanotransferase producing alkaliphilic Bacillus sp. from a deep-sea mud sample. Starch, 45, 95–99.Google Scholar
  30. Gessesse, A. (1998). Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus spp. Applied and Environmental Microbiology, 9, 3533–3535.Google Scholar
  31. Ghauri, M. A., Khalid, A. M., Grant, S., Grant, W. D., & Heaphy, S. (2006). Phylogenetic ­analysis of bacterial isolates from man-made high-pH, high-salt environments and identification of gene-cassette-associated open reading frames. Current Microbiology, 52, 487–492.Google Scholar
  32. Ghosh, A., Bhardwaj, M., Satyanarayana, T., Khurana, M., Mayilraj, S., & Jain, R. K. (2007). Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 5, 238–242.Google Scholar
  33. Gilmour, R., Messner, P., Guffanti, A. A., Kent, R., Schebrel, A., Kerdrick, N., & Krulwich, T. (2000). Two-dimensional gel electrophoresis analyses of pH dependent protein expression in facultatively alkaliphilic Bacillus pseudofermus OF4 lead to characterisation of an S-layer ­protein with a role in alkaliphily. Journal of Bacteriology, 182, 5969–5981.Google Scholar
  34. Gordon, R. E., & Hyde, J. L. (1982). The Bacillus firmus-Bacillus lentus complex and pH 7.0 ­variants of some alkalophilic strains. Journal of General Microbiology, 128, 1109–1116.Google Scholar
  35. Grant, D. W., Mills, A. A., & Schofield, A. K. (1979). An alkalophilic sp of Ectothiorhodospira from a Kenyan soda lake. Journal of General Microbiology, 110, 137–142.Google Scholar
  36. Grant, W. D., Mwatha, W. E., & Jones, B. E. (1990). Alkaliphiles: Ecology diversity and applications. FEMS Microbiology Reviews, 75, 255–270.Google Scholar
  37. Grant, W. D. (2006). Alkaline environments and biodiversity. In Extremophiles, (Eds. Charles Gerday, and Nicolas Glansdorff), in Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK.Google Scholar
  38. Guffanti, A. A., Blanco, R., Benenson, R. A., & Krulwich, T. A. (1980). Bioenergetic properties of alkaline tolerant and alkalophilic strains of Bacillus firmus. Journal of General Microbiology, 119, 79–86.Google Scholar
  39. Gupta, S., Bhushan, B., & Hoondal, G. S. (2000). Isolation, purification and characterisation of xylanase from Staphylococcus sps SG 13 and its appplication in biobleaching of Kraft pulp. Journal of Applied Microbiology, 88, 325–334.Google Scholar
  40. Hamasaki, N., Shirai, S., Niitsu, M., Kakinuma, K., & Oshima, T. (1993). An alkalophilic Bacillus sp. produces 2-phenylethylamine. Applied and Environmental Microbiology, 59, 2720–2722.Google Scholar
  41. Hansen, S. J., & Ahring, B. K. (1997). Anaerobic microbiology of an alkaline Icelandic hot spring. FEMS Microbiology Ecology, 23, 31–38.Google Scholar
  42. Hicks, D. B., Liu, J., Fujisawa, M., & Krulwich, T. A. (2010). F1F0-ATP synthases of alkaliphilic bacteria: Lessons from their adaptations. Biochimica Biophysica Acta, 1797, 1362–1367.Google Scholar
  43. Horikoshi, K. (1971). Production of alkaline enzymes by alkaliphilic microorganisms II. Alkaline amylase produced by alkaline Bacillus no.A-40-2. Agricultural and Biological Chemistry, 35, 1783–1791.Google Scholar
  44. Horikoshi, K. (1991). Microorganisms in alkaline environments. Tokyo: Kodansha-VCH.Google Scholar
  45. Horikoshi, K. (1999). Alkaliphiles: Some applications of their products for biotechnology. ­Microbiology and Molecular Biology Reviews, 63, 735–750.Google Scholar
  46. Horikoshi, K., & Bull, A. T. (2011). Prologue: Definition, categories, distribution, origin and ­evolution, pioneering studies and emerging fields. In K. Horikoshi, G. Antranikan, A. T. Bull, F. T. Robb, & K. O. Stetter (Eds.), Extremophiles handbook (pp. 4–15). Berlin: Springer.Google Scholar
  47. Horikoshi, K., Nakao, M., Kurono, Y., & Sashihara, N. (1984). Cellulases of an alkalophilic ­Bacillus strain isolated from soil. Journal of Microbiology, 30, 774–779.Google Scholar
  48. Ito, S. (1997). Alkaline cellulases from alkalophilic Bacillus: Enzymatic properties, genetics, and application to detergents. Extremophiles: life under extreme conditions, 1, 61–66.Google Scholar
  49. Ito, M., & Aono, R. (2002). Decrease in cytoplasmic pH-homeostatic activity of the alkaliphile Bacillus lentus C-125 by a cell wall defect. Bioscience Biotechnology and Biochemistry, 66, 218–220.Google Scholar
  50. Ito, M., Terahara, N., Fujinami, S., & Krulwich, T. A. (2005). Properties of motility in Bacillus subtilis powered by the H-coupled MotAB flagellar stator, Na-coupled MotPS or hybrid ­stators MotAS or MotPB. Journal of Molecular Biology, 352, 396–408.Google Scholar
  51. Jangir, P. K., Singh, A., Shivaji, S., Sharma, R. (2012). Genome sequence of an alkaliphilic ­bacterium Nitritalea halalkaliphila type strain LW7, isolated from Lonar Lake. Journal of Bacteriology, 194(20), 5688–5689.Google Scholar
  52. Janto, B., Ahmed, A., Liu, J., Hicks, D. B., Pagni, S., Fackelmayer, O. J., Smith, T. A., & ­Krulwich, T. A. (2011). The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environmental ­Microbiology, 13(12), 3289–3309.Google Scholar
  53. Joshi, A., & Kanekar, P. P. (2011). Production of exopolysaccharide by Vagococcus carniphilus MCMB1018 isolated from alkaline Lonar Lake, India. Annals of Microbiology, 61, 733–740.Google Scholar
  54. Joshi, A. A., Kanekar, P. P., Kelkar, A. S., Sarnaik, S. S., Shouche, Y. S., & Wani, A. A. (2007). Moderately halophilic, alkalitolerant Halomonas campisalis MCM B-365 from Lonar Lake, India. Journal of Basic Microbiology, 47, 213–221.Google Scholar
  55. Joshi, A. A., Kanekar, P. P., Kelkar, A. S., Shouche, Y. S., Vani, A. A., Borgave, S. B., & Sarnaik, S. S. (2008). Cultivable bacterial diversity of alkaline Lonar Lake, India. Microbial Ecology, 55, 163–172.Google Scholar
  56. Kanekar, P. P., Sarnaik, S. S., & Kelkar, A. S. (1999). Bioremediation of phenol by alkaliphilic ­bacteria isolated from alkaline lake of Lonar, India. Journal of Applied Microbiology ­Symposium Supplement, 85, 128S–133S.Google Scholar
  57. Karlsson, S. Z., Banhide, G., & Alberssen, A. C. (1988). Identification and characterization of alkali-tolerant Clostridia isolated from biodeteriorated casein-containing building material. Applied Microbiology and Biotechnology, 28, 305–310.Google Scholar
  58. Kevbrin, V. V., Zhilina, T. N., Rainey, F. A., & Zavarzin, G. A. (1998). Tindallia magadii gen.nov., sp.nov, an alkalophilic anaerobic ammonifier from soda lake deposits. Current Microbiology, 37, 94–100.Google Scholar
  59. Khmelenina, V. N., Starostina, M. G., Suzina, N. E., & Trotsenko, Y. A. (1997). Isolation and characterization of halotolerant alkalophilic methanotrophic bacteria from Tuva soda lakes. Current Microbiology, 35, 257–261.Google Scholar
  60. Kimura, T., & Horikoshi, K. (1990). Characterisation of Pullulan-hydrolysing enzyme from an alkalo-psychrotrophic Micrococcus sp. Applied Microbiology and Biotechnology, 34, 52–56.Google Scholar
  61. Kitada, M., Wijayanti, L., & Horikoshi, K. (1987). Biochemical properties of a thermophillic ­alkalophile. Agricultural and Biological Chemistry, 51, 2429–2435.Google Scholar
  62. Kosono, S., Ohashi, Y., Kawamura, F., Kitada, M., & Kudo, T. (2000). Function of a principal Na +/H + antiporter, Sha A is required for initiation of sporulation in Bacillus subtilis. Journal of Bacteriology, 182, 898–904.Google Scholar
  63. Koyama, N., & Nosoh, Y. (1995). Effect of potassium and sodium ions on the cytoplasmic pH of a Bacillus. Biochimica Biophysica Acta, 812, 206–212.Google Scholar
  64. Krulwich, T. A. (1995). Alkaliphiles: ‘basic’ molecular problems of pH tolerance and ­bioenergetics. Molecular Microbiology, 15, 403–410.Google Scholar
  65. Krulwich, T. A., & Guffanti, A. A. (1989). Alkalophilic bacteria. Annual Review of Microbiology, 43, 435–463.Google Scholar
  66. Krulwich, T. A., & Ito, M. (2013). Alkaliphilic prokaryotes. In E. Rosenberg, E. F. Delong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The prokaryotes (pp. 441–469). Heidelberg: Springer.Google Scholar
  67. Krulwich, A. T., Agus, R., Schneier, M., & Guffanti, A. A. (1985). Buffering capacity of Bacilli that grow at different pH ranges. Journal of Bacteriology, 162, 768–772.Google Scholar
  68. Krulwich, T. A., Hicks, D. B., Seto-Young, D., & Guffanti, A. A. (1988). The bioenergetics of alkalophilic bacilli. Critical Reviews in Microbiology, 16, 15–36.Google Scholar
  69. Krulwich, T. A., Masahiro, I., Gilmour, G., Hicks, D. B., & Guffanti, A. A. (1998). Energetics of alkaliphilic Bacillus sp. Physiology and molecules. Advances in Microbial Physiology, 40, 401–436.Google Scholar
  70. Krulwich, T. A., Hicks, D. B., & Ito, M. (2009). Cation/proton antiporter complements of bacteria: Why so large and diverse? Molecular Microbiology, 74, 257–260.Google Scholar
  71. Krulwich, T. A., Liu, J., Morino, M., Fujisawa, M., Ito, M., & Hicks, D. (2011a). Adaptive ­mechanisms of extreme alkaliphiles. In K. Horikoshi, G. Antranikan, A. Bull, F. T. Robb, & K. Stetter (Eds.), Extremophiles handbook (pp. 120–139). Heidelberg: Springer.Google Scholar
  72. Krulwich, T. A., Sachs, G., & Padan, E. (2011b). Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 9, 330–343.Google Scholar
  73. Kumar, C. G., Joo, H. S., Choi, J. W., Koo, Y. M., & Chang, C. S. (2004). Purification and ­characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme and Microbial Technology, 34, 673–681.Google Scholar
  74. Lee, J. C., Lee, G. S., Park, D. J., & Kim, C. J. (2008). Bacillus alkalitelluris sp. nov., an ­alkaliphilic bacterium isolated from sandy soil. International Journal of Systematic and Evolutionary ­Microbiology, 58, 2629–2634.Google Scholar
  75. Lefevre, C. T., Frankel, R. B., Posfai, M., Prozorov, T., & Bazylinski, D. A. (2011). Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. ­Environmental Microbiology, 13, 2342–2350.Google Scholar
  76. Lesuisse, E., Schanck, K., & Colson, C. (1993). Purification and preliminary characterisation of an extracellular lipase of Bacillus subtilis 168, an extremely alkaline pH-tolerant enzyme. ­European Journal of Biochemistry, 216(1), 155–160.Google Scholar
  77. Li, Y. H., Engle, M. N., Weiss, L., Mandelco, L., & Wiegel, J. (1994). Clostridium ­thermoalcaliphilum sp. nov, an anaerobic and thermotolerant facultative alkaliphile. ­International Journal of ­Systematic and Evolutionary Microbiology, 44, 111–118.Google Scholar
  78. Lowe, S. E., et al. (1993). Anaerobic bacteria adapted to environmental stress. Microbiological Reviews, 57, 483–492.Google Scholar
  79. Mc Lean, R. J. C., Beauchemin, D., Clapham, L., & Beveridge, T. J. (1990). Metal binding characteristics of the Gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Applied and Environmental Microbiology, 56, 3671–3677.Google Scholar
  80. McMillan, D. G., Keis, S., Dimroth, P., & Cook, G. M. (2007). A specific adaptation in the a subunit of thermoalkaliphilic F1F0-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. Journal of Biological Chemistry, 282, 17395–17404.Google Scholar
  81. McMillan, D. G., Vetasquez, I., Nunn, B. L., Goodlett, D. R., Hunter, K. A., Lamont, I., Sander, S. G., & Cook, G. M. (2010). Acquisition of iron by alkaliphilic bacillus species. Applied and Environmental Microbiology, 76, 6955–6961.Google Scholar
  82. Mesbah, N. M., & Wiegel, J. (2011). The Na + -translocating F1F0-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. Biochimica et Biophysica Acta 1807(9) 1133–1142. Google Scholar
  83. Mesbah, N. M., Abou-El-Ela, S. H., & Wiegel, J. (2007). Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun Egypt. Microbial Ecology, 54, 598–617.Google Scholar
  84. Mesbah, N., Cook, G., & Wiegel, J. (2009). The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na(K)/H+ antiporters. Molecular Microbiology, 74, 270–281.Google Scholar
  85. Nakamura, S. K., Wakabayashi, R., Nakai, R., & Horikoshi, K. (1993). Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. Strain 41 M-1. Applied and Environmental Microbiology, 59, 2311–2316.Google Scholar
  86. Nihalani, D., & Satyanarayan, T. (1992). Isolation and characterisation of extracellular alkaline enzyme producing bacteria. Indian Journal of Microbiology, 32, 443–449.Google Scholar
  87. Nimura, Y., Yanangida, F., Uchimura, T., Ohara, N., Suzuki, K., & Kozaki, M. (1987). A new facultative anaerobic xylan using alkalophile lacking cytochrome, quinone and catalase. ­Agricultural and Biological Chemistry, 51, 2271–2275.Google Scholar
  88. Nogi, Y., Takami, H., & Horikoshi, K. (2005). Characterization of alkaliphilic Bacillus strains used in industry: Proposal of five novel species. International Journal of Systematic and ­Evolutionary Microbiology, 55, 2309–2315.Google Scholar
  89. Nomoto, M., Oshawa, M., Wang, H. L., Chen, C. C., & Yeh, K. W. (1988). Purification and ­characterization of extracellular alkaline phosphatase from an alkaliphilic bacterium. ­Agricultural and Biological Chemistry, 52, 1643–1647.Google Scholar
  90. Padan, E., Bibi, E., Ito, M., & Krulwich, T. A. (2005). Alkaline pH homeostasis in bacteria: New insights. Biochimica Biophysica Acta, 1717, 67–88.Google Scholar
  91. Pogoryelov, D., Sudhir, P. R., Kovacs, L., Gombos, Z., Brown, I., & Garab, G. (2003). ­Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium ­Arthrospira platensis. Journal of Bioenergetics and Biomembranes, 35, 427–437.Google Scholar
  92. Rajaram, S., & Varma, A. (1990). Production and characterisation of xylanase from Bacillus ­thermoalkalophilus grown on agricultural wastes. Applied Microbiology and Biotechnology, 34, 141–144.Google Scholar
  93. Ray, R. R., & Nanda, G. (1996). Microbial ⍰-amylases: Biosynthesis, characteristics and ­industrial applications. Critical Reviews in Microbiology, 22, 181–199.Google Scholar
  94. Rees, H. C., Grant, W. D., Jones, B. E., & Heaphy, S. (2004). Diversity of Kenyan soda lake ­alkaliphiles assessed by molecular methods. Extremophiles: life under extreme conditions, 8, 63–71.Google Scholar
  95. Roadcap, G. S., Sanford, R. A., Jin, Q., Pardinas, J. R., & Bethke, C. M. (2006). Extremely alkaline (pH > 12) ground water hosts diverse microbial community. Ground Water, 44, 511–517.Google Scholar
  96. Ruis, N., & Loren, J. G. (1998). Buffering capacity and membrane H+ conductance of ­neutrophilic and alkalophilic gram-positive bacteria. Applied and Environmental Microbiology, 64, ­1344–1349.Google Scholar
  97. Saeki, K., Ozaki, K., Kobayashi, T., & Ito, S. (2007). Detergent alkaliphile proteases: Enzymatic properties, genes, and crystal structures. Journal of Biosciences and Bioengineering, 103, 501–508.Google Scholar
  98. Salva, T. D. G., Delima, V. B., & Pagana, A. P. (1997). Screening of alkaliphilic bacteria for ­Cyclodextrin glycosyl transferase production. Revista de Microbiologica, 28, 157–164.Google Scholar
  99. Sarethy, I. P., Saxena, Y., Kapoor, A., Sharma, M., Sharma, S. K., Gupta, V., & Gupta, S. (2011). Alkaliphilic bacteria: Applications in industrial biotechnology. Journal of Industrial ­Microbiology and Biotechnology, 38, 769–790.Google Scholar
  100. Shikata, S., Saeki, K., Okoshi, H., Yoshimatsu, T., Ozaki, K., Kawai, S., & Ito, S. (1990). ­Alkaline cellulase for laundry detergents: Production by alkalophilic strains of Bacillus and some ­properties of the crude enzymes. Agricultural Biological Chemistry, 54, 91–96.Google Scholar
  101. Shirai, T., Igarashi, K., Ozawa, T., Hagihara, H., Kobayashi, T., Ozaki, K., & Ito, S. (2007). ­Ancestral sequence evolutionary trace and crystal structure analyses of alkaline a-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins, 66, 600–610.Google Scholar
  102. Singh, S. (1995). Partial purification and some properties of urease from the alkaliphilic ­cyanobacterium Nostoc calcicola. Folia Microbiologica Prague, 40, 529–533.Google Scholar
  103. Sneath, P. H., Nicholas, A., Mair, S., Elisabeth, M., Sharpe, J., & Holt, G. (1986). Bergeys manual of systematic bacteriology. Baltimore: Williams and Wilkins.Google Scholar
  104. Sorokin, D. Y., & Kuenen, J. G. (2005). Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiological Reviews, 29, 685–702.Google Scholar
  105. Sorokin, D. Y., Muyzer, G., Brinkhoff, T., Kuenen, J. G., & Jetten, M. S. M. (1998). Isolation and characterisation of a novel facultatively alkalophilic Nitrobacter sps, N.alkalicus sp. nov. Archive Microbiology, 170, 345–352.Google Scholar
  106. Sorokin, I. D., Kravchenko, I. K., Tourova, T. P., Kolganova, T. V., Boulygina, E. S., & Sorokin, D. Y. (2008). Bacillus alkalidiazotrophicu sp. nov., a diazotrophic, low salt-tolerant ­alkaliphile isolated from Mongolian soda soil. International Journal of Systematic of Evolutionary ­Microbiology, 58, 2459–2464.Google Scholar
  107. Sorokin, D. Y., Kuenen, J. G., & Muyzer, G. (2011). The microbial sulfur cycle at extremely ­haloalkaline conditions of soda lakes. Frontiers in Microbiology, 2, 44.Google Scholar
  108. Takami, H., Inoue, A., Fuji, F., & Horikoshi, K. (1997). Microbiol flora in the deepest sea mud of the Mariana Trench. FEMS Microbiology Letters, 152, 279–285.Google Scholar
  109. Takimura, Y., Saito, K., Okuda, M., Kageyama, Y., Katsuhisa, S., Ozaki, K., Ito, S., & Kobayashi, T. (2007). Alkaliphilic Bacillus sp. strain KSM-LD1 contains a record number of subtilisin-like proteases genes. Applied Microbiology and Biotechnology, 76, 395–405.Google Scholar
  110. Thongaram, T., Kosono, S., Ohkuma, M., Hongoh, Y., Kitada, M., Yoshinaka, T., Trakulnaleamsai, S., Noparatnaraporn, N., & Kudo, T. (2003). Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes and Environment, 18, 152–159.Google Scholar
  111. Thongaram, T., Hongoh, Y., Kosono, S., Ohkuma, M., Trakulnaleamsai, S., Noparatnaraporn, N., & Kudo, T. (2005). Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles, 9, 229–238.Google Scholar
  112. Tindall, B. J., Allan, A., Mills, A., & Grant, W. D. (1980). An alkalophilic red halophilic Bacterium with low magnesium requirement from a Kenyan soda lake. Journal of General Microbiology, 116, 257–260.Google Scholar
  113. Tsujibo, H., Sato, T., Inui, M., Yamamoto, H., & Inamori, Y. (1988). Intra-cellular ­accumulation of phenazine antibobiotics production by an alkalophilic actinomycete. Agricultural and ­Biological Chemistry, 52, 301–306.Google Scholar
  114. Upsani, V., & Desai, S. (1990). Sambhar Salt Lake-chemical composition of the brines and studies on haloalkaliphilic archaebacteria. Archives of Microbiology, 154, 589–593.Google Scholar
  115. Vargas, V. A., Delgado, O. D., Hatti-Kaul, R., & Mattiasson, B. (2005). Bacillus bogoriensis sp. nov., a novel alkaliphilic, halotolerant bacterium isolated from a Kenyan soda lake. ­International Journal of Systematic and Evolutionary Microbiology, 55, 899–902.Google Scholar
  116. Wang, Y. X., Srivastava, K. C., Shen, G. J., & Wang, H. Y. (1995). Thermostable alkaline ­lipase from a newly isolated thermophilic Bacillus, strain A-30-1 (ATCC 53841). Journal of ­Fermentation and Bioengineering, 79, 433–438.Google Scholar
  117. Xu, Y., Zhou, P. J., & Tian, X. Y. (1999). Characterisation of two novel haloalkalophilic archaea Natronorubrum bangense gen. Nov., sp. Nov., and Natronorubrum tibetense gen. nov., sp. nov. International Journal of Systematic Bacteriology, 49, 261–266.Google Scholar
  118. Yoshihara, K., & Kobayashi, Y. (1982). Retting of Mitsumata bast by alakophilic Bacillus in ­papermaking. Agricultural and Biological Chemistry, 46, 109–117.Google Scholar
  119. Yumoto, I. (2007). Environmental and taxonomic biodiversities of gram-positive alkaliphiles. In C. Gerday & N. Glansdorff (Eds.), Physiology and biochemistry of extremophiles (pp. ­295–310). Washington: ASM Press.Google Scholar
  120. Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Inoue, N., & Kawasaki, K. (2000). ­Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid ­composition and cell-surface aspects depending on culture pH. Extremophiles, 4, 285–290.Google Scholar
  121. Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K., & Suemori, A. (2003). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and hydroxybenzoate. International Journal of Systematic and Evolutionary Microbiology, 53, 1531–1536.Google Scholar
  122. Yumoto, I., Hirota, K., Nodasaka, Y., Yokota, Y., Hoshino, T., & Nakajima, N. (2004). ­Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that ­reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 54, ­2379–2383.Google Scholar
  123. Zhang, H.-M., Li, Z., Tsudome, M., Ito, S., Takami, H., & Horikoshi, K. (2005). An alkali-inducible flotillin-like protein from Bacillus halodurans C125. The Protein Journal, 24, 125–131.Google Scholar
  124. Zhao, B., Mesbah, N. M., Dalin, E., Goodwin, L. A., Nolan, M., Pitluck, S., Cherkov, O., Brettin, T. S., Han, J., Larimer, F. W., Land, M. L., Hauser, L. J., Kyrpides, N., & Wiegel, J. (2011). Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. Journal of Bacteriology, 193, 4023–4024.Google Scholar
  125. Zhilina, T. N., Zavarzin, G. A., Rainey, F., Kevbrin, V. V., Kostrikina, N. A., & Lysenko, A. M. (1996). Spirochaeta alkalica sp.nov. Spirochaeta africana sp. Nov., and Spirochaeta asiatica sp.nov. alkalophilic anaerobes from the continental soda lakes in Central Asia and the East African Rift. International Journal of Systematic Bacteriology, 46, 305–312.Google Scholar
  126. Zhilina, T. N., Appel, R., Probian, C., Brossa, E. L., Harder, J., Widdel, F., & Zavarzin, G. A. (2004). Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Archives of Microbiology, 182, 244–253.Google Scholar
  127. Zhilina, T. N., Kevrin, W., Turova, T. P., Lysenko, A. M., Kostrikina, N. A., & Zavarzin, G. A. (2005). Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Mikrobiologia, 74, 642–653.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MicrobiologyP.E.S’s Shri Ravi Sitaram Naik College of Arts & SciencePondaIndia

Personalised recommendations